Step |
Hyp |
Ref |
Expression |
1 |
|
frmdup.m |
|
2 |
|
frmdup.b |
|
3 |
|
frmdup.e |
|
4 |
|
frmdup.g |
|
5 |
|
frmdup.i |
|
6 |
|
frmdup.a |
|
7 |
1
|
frmdmnd |
|
8 |
5 7
|
syl |
|
9 |
4
|
adantr |
|
10 |
|
simpr |
|
11 |
6
|
adantr |
|
12 |
|
wrdco |
|
13 |
10 11 12
|
syl2anc |
|
14 |
2
|
gsumwcl |
|
15 |
9 13 14
|
syl2anc |
|
16 |
15 3
|
fmptd |
|
17 |
|
eqid |
|
18 |
1 17
|
frmdbas |
|
19 |
5 18
|
syl |
|
20 |
19
|
feq2d |
|
21 |
16 20
|
mpbird |
|
22 |
1 17
|
frmdelbas |
|
23 |
22
|
ad2antrl |
|
24 |
1 17
|
frmdelbas |
|
25 |
24
|
ad2antll |
|
26 |
6
|
adantr |
|
27 |
|
ccatco |
|
28 |
23 25 26 27
|
syl3anc |
|
29 |
28
|
oveq2d |
|
30 |
4
|
adantr |
|
31 |
|
wrdco |
|
32 |
23 26 31
|
syl2anc |
|
33 |
|
wrdco |
|
34 |
25 26 33
|
syl2anc |
|
35 |
|
eqid |
|
36 |
2 35
|
gsumccat |
|
37 |
30 32 34 36
|
syl3anc |
|
38 |
29 37
|
eqtrd |
|
39 |
|
eqid |
|
40 |
1 17 39
|
frmdadd |
|
41 |
40
|
adantl |
|
42 |
41
|
fveq2d |
|
43 |
|
ccatcl |
|
44 |
23 25 43
|
syl2anc |
|
45 |
|
coeq2 |
|
46 |
45
|
oveq2d |
|
47 |
|
ovex |
|
48 |
46 3 47
|
fvmpt3i |
|
49 |
44 48
|
syl |
|
50 |
42 49
|
eqtrd |
|
51 |
|
coeq2 |
|
52 |
51
|
oveq2d |
|
53 |
52 3 47
|
fvmpt3i |
|
54 |
|
coeq2 |
|
55 |
54
|
oveq2d |
|
56 |
55 3 47
|
fvmpt3i |
|
57 |
53 56
|
oveqan12d |
|
58 |
23 25 57
|
syl2anc |
|
59 |
38 50 58
|
3eqtr4d |
|
60 |
59
|
ralrimivva |
|
61 |
|
wrd0 |
|
62 |
|
coeq2 |
|
63 |
|
co02 |
|
64 |
62 63
|
eqtrdi |
|
65 |
64
|
oveq2d |
|
66 |
|
eqid |
|
67 |
66
|
gsum0 |
|
68 |
65 67
|
eqtrdi |
|
69 |
68 3 47
|
fvmpt3i |
|
70 |
61 69
|
mp1i |
|
71 |
21 60 70
|
3jca |
|
72 |
1
|
frmd0 |
|
73 |
17 2 39 35 72 66
|
ismhm |
|
74 |
8 4 71 73
|
syl21anbrc |
|