Metamath Proof Explorer


Theorem frmdval

Description: Value of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses frmdval.m M = freeMnd I
frmdval.b I V B = Word I
frmdval.p + ˙ = ++ B × B
Assertion frmdval I V M = Base ndx B + ndx + ˙

Proof

Step Hyp Ref Expression
1 frmdval.m M = freeMnd I
2 frmdval.b I V B = Word I
3 frmdval.p + ˙ = ++ B × B
4 df-frmd freeMnd = i V Base ndx Word i + ndx ++ Word i × Word i
5 wrdeq i = I Word i = Word I
6 2 eqcomd I V Word I = B
7 5 6 sylan9eqr I V i = I Word i = B
8 7 opeq2d I V i = I Base ndx Word i = Base ndx B
9 7 sqxpeqd I V i = I Word i × Word i = B × B
10 9 reseq2d I V i = I ++ Word i × Word i = ++ B × B
11 10 3 eqtr4di I V i = I ++ Word i × Word i = + ˙
12 11 opeq2d I V i = I + ndx ++ Word i × Word i = + ndx + ˙
13 8 12 preq12d I V i = I Base ndx Word i + ndx ++ Word i × Word i = Base ndx B + ndx + ˙
14 elex I V I V
15 prex Base ndx B + ndx + ˙ V
16 15 a1i I V Base ndx B + ndx + ˙ V
17 4 13 14 16 fvmptd2 I V freeMnd I = Base ndx B + ndx + ˙
18 1 17 eqtrid I V M = Base ndx B + ndx + ˙