Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Free monoids
frmdval
Next ⟩
frmdbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
frmdval
Description:
Value of the free monoid construction.
(Contributed by
Mario Carneiro
, 27-Sep-2015)
Ref
Expression
Hypotheses
frmdval.m
⊢
M
=
freeMnd
⁡
I
frmdval.b
⊢
I
∈
V
→
B
=
Word
I
frmdval.p
⊢
+
˙
=
++
↾
B
×
B
Assertion
frmdval
⊢
I
∈
V
→
M
=
Base
ndx
B
+
ndx
+
˙
Proof
Step
Hyp
Ref
Expression
1
frmdval.m
⊢
M
=
freeMnd
⁡
I
2
frmdval.b
⊢
I
∈
V
→
B
=
Word
I
3
frmdval.p
⊢
+
˙
=
++
↾
B
×
B
4
df-frmd
⊢
freeMnd
=
i
∈
V
⟼
Base
ndx
Word
i
+
ndx
++
↾
Word
i
×
Word
i
5
wrdeq
⊢
i
=
I
→
Word
i
=
Word
I
6
2
eqcomd
⊢
I
∈
V
→
Word
I
=
B
7
5
6
sylan9eqr
⊢
I
∈
V
∧
i
=
I
→
Word
i
=
B
8
7
opeq2d
⊢
I
∈
V
∧
i
=
I
→
Base
ndx
Word
i
=
Base
ndx
B
9
7
sqxpeqd
⊢
I
∈
V
∧
i
=
I
→
Word
i
×
Word
i
=
B
×
B
10
9
reseq2d
⊢
I
∈
V
∧
i
=
I
→
++
↾
Word
i
×
Word
i
=
++
↾
B
×
B
11
10
3
eqtr4di
⊢
I
∈
V
∧
i
=
I
→
++
↾
Word
i
×
Word
i
=
+
˙
12
11
opeq2d
⊢
I
∈
V
∧
i
=
I
→
+
ndx
++
↾
Word
i
×
Word
i
=
+
ndx
+
˙
13
8
12
preq12d
⊢
I
∈
V
∧
i
=
I
→
Base
ndx
Word
i
+
ndx
++
↾
Word
i
×
Word
i
=
Base
ndx
B
+
ndx
+
˙
14
elex
⊢
I
∈
V
→
I
∈
V
15
prex
⊢
Base
ndx
B
+
ndx
+
˙
∈
V
16
15
a1i
⊢
I
∈
V
→
Base
ndx
B
+
ndx
+
˙
∈
V
17
4
13
14
16
fvmptd2
⊢
I
∈
V
→
freeMnd
⁡
I
=
Base
ndx
B
+
ndx
+
˙
18
1
17
eqtrid
⊢
I
∈
V
→
M
=
Base
ndx
B
+
ndx
+
˙