Metamath Proof Explorer


Theorem frmin

Description: Every (possibly proper) subclass of a class A with a well-founded set-like relation R has a minimal element. This is a very strong generalization of tz6.26 and tz7.5 . (Contributed by Scott Fenton, 4-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015) (Revised by Scott Fenton, 27-Nov-2024)

Ref Expression
Assertion frmin RFrARSeABAByBPredRBy=

Proof

Step Hyp Ref Expression
1 frss BARFrARFrB
2 sess2 BARSeARSeB
3 1 2 anim12d BARFrARSeARFrBRSeB
4 n0 BbbB
5 predeq3 y=bPredRBy=PredRBb
6 5 eqeq1d y=bPredRBy=PredRBb=
7 6 rspcev bBPredRBb=yBPredRBy=
8 7 ex bBPredRBb=yBPredRBy=
9 8 adantl RFrBRSeBbBPredRBb=yBPredRBy=
10 predres PredRBb=PredRBBb
11 relres RelRB
12 ssttrcl RelRBRBt++RB
13 11 12 ax-mp RBt++RB
14 predrelss RBt++RBPredRBBbPredt++RBBb
15 13 14 ax-mp PredRBBbPredt++RBBb
16 10 15 eqsstri PredRBbPredt++RBBb
17 ssn0 PredRBbPredt++RBBbPredRBbPredt++RBBb
18 16 17 mpan PredRBbPredt++RBBb
19 predss Predt++RBBbB
20 18 19 jctil PredRBbPredt++RBBbBPredt++RBBb
21 dffr4 RFrBccBcycPredRcy=
22 21 biimpi RFrBccBcycPredRcy=
23 ttrclse RSeBt++RBSeB
24 setlikespec bBt++RBSeBPredt++RBBbV
25 23 24 sylan2 bBRSeBPredt++RBBbV
26 25 ancoms RSeBbBPredt++RBBbV
27 sseq1 c=Predt++RBBbcBPredt++RBBbB
28 neeq1 c=Predt++RBBbcPredt++RBBb
29 27 28 anbi12d c=Predt++RBBbcBcPredt++RBBbBPredt++RBBb
30 predeq2 c=Predt++RBBbPredRcy=PredRPredt++RBBby
31 30 eqeq1d c=Predt++RBBbPredRcy=PredRPredt++RBBby=
32 31 rexeqbi1dv c=Predt++RBBbycPredRcy=yPredt++RBBbPredRPredt++RBBby=
33 29 32 imbi12d c=Predt++RBBbcBcycPredRcy=Predt++RBBbBPredt++RBBbyPredt++RBBbPredRPredt++RBBby=
34 33 spcgv Predt++RBBbVccBcycPredRcy=Predt++RBBbBPredt++RBBbyPredt++RBBbPredRPredt++RBBby=
35 34 impcom ccBcycPredRcy=Predt++RBBbVPredt++RBBbBPredt++RBBbyPredt++RBBbPredRPredt++RBBby=
36 22 26 35 syl2an RFrBRSeBbBPredt++RBBbBPredt++RBBbyPredt++RBBbPredRPredt++RBBby=
37 36 anassrs RFrBRSeBbBPredt++RBBbBPredt++RBBbyPredt++RBBbPredRPredt++RBBby=
38 predres PredRBy=PredRBBy
39 predrelss RBt++RBPredRBByPredt++RBBy
40 13 39 ax-mp PredRBByPredt++RBBy
41 38 40 eqsstri PredRByPredt++RBBy
42 inss1 t++RBB×Bt++RB
43 coss1 t++RBB×Bt++RBt++RBB×Bt++RBB×Bt++RBt++RBB×B
44 42 43 ax-mp t++RBB×Bt++RBB×Bt++RBt++RBB×B
45 coss2 t++RBB×Bt++RBt++RBt++RBB×Bt++RBt++RB
46 42 45 ax-mp t++RBt++RBB×Bt++RBt++RB
47 44 46 sstri t++RBB×Bt++RBB×Bt++RBt++RB
48 ttrcltr t++RBt++RBt++RB
49 47 48 sstri t++RBB×Bt++RBB×Bt++RB
50 predtrss t++RBB×Bt++RBB×Bt++RByPredt++RBBbbBPredt++RBByPredt++RBBb
51 49 50 mp3an1 yPredt++RBBbbBPredt++RBByPredt++RBBb
52 41 51 sstrid yPredt++RBBbbBPredRByPredt++RBBb
53 sspred Predt++RBBbBPredRByPredt++RBBbPredRBy=PredRPredt++RBBby
54 19 52 53 sylancr yPredt++RBBbbBPredRBy=PredRPredt++RBBby
55 54 ancoms bByPredt++RBBbPredRBy=PredRPredt++RBBby
56 55 eqeq1d bByPredt++RBBbPredRBy=PredRPredt++RBBby=
57 56 rexbidva bByPredt++RBBbPredRBy=yPredt++RBBbPredRPredt++RBBby=
58 ssrexv Predt++RBBbByPredt++RBBbPredRBy=yBPredRBy=
59 19 58 ax-mp yPredt++RBBbPredRBy=yBPredRBy=
60 57 59 biimtrrdi bByPredt++RBBbPredRPredt++RBBby=yBPredRBy=
61 60 adantl RFrBRSeBbByPredt++RBBbPredRPredt++RBBby=yBPredRBy=
62 37 61 syld RFrBRSeBbBPredt++RBBbBPredt++RBBbyBPredRBy=
63 20 62 syl5 RFrBRSeBbBPredRBbyBPredRBy=
64 9 63 pm2.61dne RFrBRSeBbByBPredRBy=
65 64 ex RFrBRSeBbByBPredRBy=
66 65 exlimdv RFrBRSeBbbByBPredRBy=
67 4 66 biimtrid RFrBRSeBByBPredRBy=
68 3 67 syl6com RFrARSeABAByBPredRBy=
69 68 imp32 RFrARSeABAByBPredRBy=