Metamath Proof Explorer


Theorem frmx

Description: The X sequence is a nonnegative integer. See rmxnn for a strengthening. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion frmx X rm : 2 × 0

Proof

Step Hyp Ref Expression
1 rmxyelxp a 2 b c 0 × 1 st c + a 2 1 2 nd c -1 a + a 2 1 b 0 ×
2 xp1st c 0 × 1 st c + a 2 1 2 nd c -1 a + a 2 1 b 0 × 1 st c 0 × 1 st c + a 2 1 2 nd c -1 a + a 2 1 b 0
3 1 2 syl a 2 b 1 st c 0 × 1 st c + a 2 1 2 nd c -1 a + a 2 1 b 0
4 3 rgen2 a 2 b 1 st c 0 × 1 st c + a 2 1 2 nd c -1 a + a 2 1 b 0
5 df-rmx X rm = a 2 , b 1 st c 0 × 1 st c + a 2 1 2 nd c -1 a + a 2 1 b
6 5 fmpo a 2 b 1 st c 0 × 1 st c + a 2 1 2 nd c -1 a + a 2 1 b 0 X rm : 2 × 0
7 4 6 mpbi X rm : 2 × 0