Metamath Proof Explorer


Theorem frmy

Description: The Y sequence is an integer. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion frmy Y rm : 2 ×

Proof

Step Hyp Ref Expression
1 rmxyelxp a 2 b c 0 × 1 st c + a 2 1 2 nd c -1 a + a 2 1 b 0 ×
2 xp2nd c 0 × 1 st c + a 2 1 2 nd c -1 a + a 2 1 b 0 × 2 nd c 0 × 1 st c + a 2 1 2 nd c -1 a + a 2 1 b
3 1 2 syl a 2 b 2 nd c 0 × 1 st c + a 2 1 2 nd c -1 a + a 2 1 b
4 3 rgen2 a 2 b 2 nd c 0 × 1 st c + a 2 1 2 nd c -1 a + a 2 1 b
5 df-rmy Y rm = a 2 , b 2 nd c 0 × 1 st c + a 2 1 2 nd c -1 a + a 2 1 b
6 5 fmpo a 2 b 2 nd c 0 × 1 st c + a 2 1 2 nd c -1 a + a 2 1 b Y rm : 2 ×
7 4 6 mpbi Y rm : 2 ×