Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
X and Y sequences 1: Definition and recurrence laws
frmy
Next ⟩
rmxyval
Metamath Proof Explorer
Ascii
Unicode
Theorem
frmy
Description:
The Y sequence is an integer.
(Contributed by
Stefan O'Rear
, 22-Sep-2014)
Ref
Expression
Assertion
frmy
⊢
Y
rm
:
ℤ
≥
2
×
ℤ
⟶
ℤ
Proof
Step
Hyp
Ref
Expression
1
rmxyelxp
⊢
a
∈
ℤ
≥
2
∧
b
∈
ℤ
→
c
∈
ℕ
0
×
ℤ
⟼
1
st
⁡
c
+
a
2
−
1
⁢
2
nd
⁡
c
-1
⁡
a
+
a
2
−
1
b
∈
ℕ
0
×
ℤ
2
xp2nd
⊢
c
∈
ℕ
0
×
ℤ
⟼
1
st
⁡
c
+
a
2
−
1
⁢
2
nd
⁡
c
-1
⁡
a
+
a
2
−
1
b
∈
ℕ
0
×
ℤ
→
2
nd
⁡
c
∈
ℕ
0
×
ℤ
⟼
1
st
⁡
c
+
a
2
−
1
⁢
2
nd
⁡
c
-1
⁡
a
+
a
2
−
1
b
∈
ℤ
3
1
2
syl
⊢
a
∈
ℤ
≥
2
∧
b
∈
ℤ
→
2
nd
⁡
c
∈
ℕ
0
×
ℤ
⟼
1
st
⁡
c
+
a
2
−
1
⁢
2
nd
⁡
c
-1
⁡
a
+
a
2
−
1
b
∈
ℤ
4
3
rgen2
⊢
∀
a
∈
ℤ
≥
2
∀
b
∈
ℤ
2
nd
⁡
c
∈
ℕ
0
×
ℤ
⟼
1
st
⁡
c
+
a
2
−
1
⁢
2
nd
⁡
c
-1
⁡
a
+
a
2
−
1
b
∈
ℤ
5
df-rmy
⊢
Y
rm
=
a
∈
ℤ
≥
2
,
b
∈
ℤ
⟼
2
nd
⁡
c
∈
ℕ
0
×
ℤ
⟼
1
st
⁡
c
+
a
2
−
1
⁢
2
nd
⁡
c
-1
⁡
a
+
a
2
−
1
b
6
5
fmpo
⊢
∀
a
∈
ℤ
≥
2
∀
b
∈
ℤ
2
nd
⁡
c
∈
ℕ
0
×
ℤ
⟼
1
st
⁡
c
+
a
2
−
1
⁢
2
nd
⁡
c
-1
⁡
a
+
a
2
−
1
b
∈
ℤ
↔
Y
rm
:
ℤ
≥
2
×
ℤ
⟶
ℤ
7
4
6
mpbi
⊢
Y
rm
:
ℤ
≥
2
×
ℤ
⟶
ℤ