Metamath Proof Explorer


Theorem frnnn0fsupp

Description: A function on NN0 is finitely supported iff its support is finite. (Contributed by AV, 8-Jul-2019)

Ref Expression
Assertion frnnn0fsupp I V F : I 0 finSupp 0 F F -1 Fin

Proof

Step Hyp Ref Expression
1 c0ex 0 V
2 frnfsuppbi I V 0 V F : I 0 finSupp 0 F F -1 0 0 Fin
3 1 2 mpan2 I V F : I 0 finSupp 0 F F -1 0 0 Fin
4 3 imp I V F : I 0 finSupp 0 F F -1 0 0 Fin
5 dfn2 = 0 0
6 5 imaeq2i F -1 = F -1 0 0
7 6 eleq1i F -1 Fin F -1 0 0 Fin
8 4 7 bitr4di I V F : I 0 finSupp 0 F F -1 Fin