Metamath Proof Explorer


Theorem frnnn0fsuppg

Description: Version of frnnn0fsupp avoiding ax-rep by assuming F is a set rather than its domain I . (Contributed by SN, 5-Aug-2024)

Ref Expression
Assertion frnnn0fsuppg F V F : I 0 finSupp 0 F F -1 Fin

Proof

Step Hyp Ref Expression
1 ffun F : I 0 Fun F
2 simpl F V F : I 0 F V
3 c0ex 0 V
4 funisfsupp Fun F F V 0 V finSupp 0 F F supp 0 Fin
5 3 4 mp3an3 Fun F F V finSupp 0 F F supp 0 Fin
6 1 2 5 syl2an2 F V F : I 0 finSupp 0 F F supp 0 Fin
7 frnnn0suppg F V F : I 0 F supp 0 = F -1
8 7 eleq1d F V F : I 0 F supp 0 Fin F -1 Fin
9 6 8 bitrd F V F : I 0 finSupp 0 F F -1 Fin