Metamath Proof Explorer


Theorem frnnn0supp

Description: Two ways to write the support of a function on NN0 . (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by AV, 7-Jul-2019)

Ref Expression
Assertion frnnn0supp I V F : I 0 F supp 0 = F -1

Proof

Step Hyp Ref Expression
1 c0ex 0 V
2 frnsuppeq I V 0 V F : I 0 F supp 0 = F -1 0 0
3 1 2 mpan2 I V F : I 0 F supp 0 = F -1 0 0
4 3 imp I V F : I 0 F supp 0 = F -1 0 0
5 dfn2 = 0 0
6 5 imaeq2i F -1 = F -1 0 0
7 4 6 eqtr4di I V F : I 0 F supp 0 = F -1