Metamath Proof Explorer


Theorem frpoins2fg

Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 24-Aug-2022)

Ref Expression
Hypotheses frpoins2fg.1 yAzPredRAyψφ
frpoins2fg.2 yψ
frpoins2fg.3 y=zφψ
Assertion frpoins2fg RFrARPoARSeAyAφ

Proof

Step Hyp Ref Expression
1 frpoins2fg.1 yAzPredRAyψφ
2 frpoins2fg.2 yψ
3 frpoins2fg.3 y=zφψ
4 sbsbc zyφ[˙z/y]˙φ
5 2 3 sbiev zyφψ
6 4 5 bitr3i [˙z/y]˙φψ
7 6 ralbii zPredRAy[˙z/y]˙φzPredRAyψ
8 1 adantl RFrARPoARSeAyAzPredRAyψφ
9 7 8 biimtrid RFrARPoARSeAyAzPredRAy[˙z/y]˙φφ
10 9 frpoinsg RFrARPoARSeAyAφ