Metamath Proof Explorer


Theorem frpoins2g

Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 24-Aug-2022)

Ref Expression
Hypotheses frpoins2g.1 yAzPredRAyψφ
frpoins2g.3 y=zφψ
Assertion frpoins2g RFrARPoARSeAyAφ

Proof

Step Hyp Ref Expression
1 frpoins2g.1 yAzPredRAyψφ
2 frpoins2g.3 y=zφψ
3 nfv yψ
4 1 3 2 frpoins2fg RFrARPoARSeAyAφ