| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
|
| 2 |
|
rabeq0 |
|
| 3 |
|
simprr |
|
| 4 |
|
breq1 |
|
| 5 |
4
|
notbid |
|
| 6 |
5
|
cbvralvw |
|
| 7 |
|
breq2 |
|
| 8 |
7
|
notbid |
|
| 9 |
8
|
ralbidv |
|
| 10 |
6 9
|
bitrid |
|
| 11 |
10
|
rspcev |
|
| 12 |
11
|
ex |
|
| 13 |
3 12
|
syl |
|
| 14 |
2 13
|
biimtrid |
|
| 15 |
|
simprl |
|
| 16 |
|
simpl3 |
|
| 17 |
|
sess2 |
|
| 18 |
15 16 17
|
sylc |
|
| 19 |
|
seex |
|
| 20 |
18 3 19
|
syl2anc |
|
| 21 |
|
simpl1 |
|
| 22 |
|
ssrab2 |
|
| 23 |
22 15
|
sstrid |
|
| 24 |
|
fri |
|
| 25 |
24
|
expr |
|
| 26 |
20 21 23 25
|
syl21anc |
|
| 27 |
|
breq1 |
|
| 28 |
27
|
rexrab |
|
| 29 |
|
breq1 |
|
| 30 |
29
|
ralrab |
|
| 31 |
|
simprr |
|
| 32 |
|
simplr |
|
| 33 |
|
simplrl |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
|
simpll2 |
|
| 36 |
35
|
ad2antrr |
|
| 37 |
|
poss |
|
| 38 |
34 36 37
|
sylc |
|
| 39 |
|
simprl |
|
| 40 |
|
simpllr |
|
| 41 |
|
simplrr |
|
| 42 |
41
|
ad2antrr |
|
| 43 |
|
potr |
|
| 44 |
38 39 40 42 43
|
syl13anc |
|
| 45 |
31 32 44
|
mp2and |
|
| 46 |
45
|
expr |
|
| 47 |
46
|
con3d |
|
| 48 |
|
idd |
|
| 49 |
47 48
|
jad |
|
| 50 |
49
|
ralimdva |
|
| 51 |
30 50
|
biimtrid |
|
| 52 |
51
|
expimpd |
|
| 53 |
52
|
reximdva |
|
| 54 |
28 53
|
biimtrid |
|
| 55 |
26 54
|
syld |
|
| 56 |
14 55
|
pm2.61dne |
|
| 57 |
56
|
expr |
|
| 58 |
57
|
exlimdv |
|
| 59 |
1 58
|
biimtrid |
|
| 60 |
59
|
impr |
|