Metamath Proof Explorer


Theorem frrlem10

Description: Lemma for well-founded recursion. Under the compatibility hypothesis, compute the value of F within its domain. (Contributed by Scott Fenton, 6-Dec-2022)

Ref Expression
Hypotheses frrlem9.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
frrlem9.2 F=frecsRAG
frrlem9.3 φgBhBxguxhvu=v
Assertion frrlem10 φydomFFy=yGFPredRAy

Proof

Step Hyp Ref Expression
1 frrlem9.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
2 frrlem9.2 F=frecsRAG
3 frrlem9.3 φgBhBxguxhvu=v
4 vex yV
5 4 eldm2 ydomFzyzF
6 1 2 frrlem5 F=B
7 1 unieqi B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
8 6 7 eqtri F=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
9 8 eleq2i yzFyzf|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
10 eluniab yzf|xfFnxxAyxPredRAyxyxfy=yGfPredRAyfyzfxfFnxxAyxPredRAyxyxfy=yGfPredRAy
11 9 10 bitri yzFfyzfxfFnxxAyxPredRAyxyxfy=yGfPredRAy
12 19.8a fFnxxAyxPredRAyxyxfy=yGfPredRAyxfFnxxAyxPredRAyxyxfy=yGfPredRAy
13 12 3ad2ant2 φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzfxfFnxxAyxPredRAyxyxfy=yGfPredRAy
14 abid ff|xfFnxxAyxPredRAyxyxfy=yGfPredRAyxfFnxxAyxPredRAyxyxfy=yGfPredRAy
15 13 14 sylibr φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzfff|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
16 elssuni ff|xfFnxxAyxPredRAyxyxfy=yGfPredRAyff|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
17 15 16 syl φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzfff|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
18 17 8 sseqtrrdi φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffF
19 simpl23 φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFyxfy=yGfPredRAy
20 simpl3 φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFyzf
21 vex zV
22 4 21 opeldm yzfydomf
23 20 22 syl φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFydomf
24 simpl21 φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFfFnx
25 24 fndmd φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFdomf=x
26 23 25 eleqtrd φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFyx
27 rsp yxfy=yGfPredRAyyxfy=yGfPredRAy
28 19 26 27 sylc φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFfy=yGfPredRAy
29 simpl1 φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFφ
30 1 2 3 frrlem9 φFunF
31 29 30 syl φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFFunF
32 simpr φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFfF
33 funssfv FunFfFydomfFy=fy
34 31 32 23 33 syl3anc φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFFy=fy
35 simp22r φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzfyxPredRAyx
36 35 adantr φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFyxPredRAyx
37 rsp yxPredRAyxyxPredRAyx
38 36 26 37 sylc φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFPredRAyx
39 38 25 sseqtrrd φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFPredRAydomf
40 fun2ssres FunFfFPredRAydomfFPredRAy=fPredRAy
41 31 32 39 40 syl3anc φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFFPredRAy=fPredRAy
42 41 oveq2d φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFyGFPredRAy=yGfPredRAy
43 28 34 42 3eqtr4d φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzffFFy=yGFPredRAy
44 18 43 mpdan φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzfFy=yGFPredRAy
45 44 3exp φfFnxxAyxPredRAyxyxfy=yGfPredRAyyzfFy=yGFPredRAy
46 45 exlimdv φxfFnxxAyxPredRAyxyxfy=yGfPredRAyyzfFy=yGFPredRAy
47 46 impcomd φyzfxfFnxxAyxPredRAyxyxfy=yGfPredRAyFy=yGFPredRAy
48 47 exlimdv φfyzfxfFnxxAyxPredRAyxyxfy=yGfPredRAyFy=yGFPredRAy
49 11 48 biimtrid φyzFFy=yGFPredRAy
50 49 exlimdv φzyzFFy=yGFPredRAy
51 5 50 biimtrid φydomFFy=yGFPredRAy
52 51 imp φydomFFy=yGFPredRAy