Description: Lemma for well-founded recursion. Under the compatibility hypothesis, compute the value of F within its domain. (Contributed by Scott Fenton, 6-Dec-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frrlem9.1 | |
|
frrlem9.2 | |
||
frrlem9.3 | |
||
Assertion | frrlem10 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frrlem9.1 | |
|
2 | frrlem9.2 | |
|
3 | frrlem9.3 | |
|
4 | vex | |
|
5 | 4 | eldm2 | |
6 | 1 2 | frrlem5 | |
7 | 1 | unieqi | |
8 | 6 7 | eqtri | |
9 | 8 | eleq2i | |
10 | eluniab | |
|
11 | 9 10 | bitri | |
12 | 19.8a | |
|
13 | 12 | 3ad2ant2 | |
14 | abid | |
|
15 | 13 14 | sylibr | |
16 | elssuni | |
|
17 | 15 16 | syl | |
18 | 17 8 | sseqtrrdi | |
19 | simpl23 | |
|
20 | simpl3 | |
|
21 | vex | |
|
22 | 4 21 | opeldm | |
23 | 20 22 | syl | |
24 | simpl21 | |
|
25 | 24 | fndmd | |
26 | 23 25 | eleqtrd | |
27 | rsp | |
|
28 | 19 26 27 | sylc | |
29 | simpl1 | |
|
30 | 1 2 3 | frrlem9 | |
31 | 29 30 | syl | |
32 | simpr | |
|
33 | funssfv | |
|
34 | 31 32 23 33 | syl3anc | |
35 | simp22r | |
|
36 | 35 | adantr | |
37 | rsp | |
|
38 | 36 26 37 | sylc | |
39 | 38 25 | sseqtrrd | |
40 | fun2ssres | |
|
41 | 31 32 39 40 | syl3anc | |
42 | 41 | oveq2d | |
43 | 28 34 42 | 3eqtr4d | |
44 | 18 43 | mpdan | |
45 | 44 | 3exp | |
46 | 45 | exlimdv | |
47 | 46 | impcomd | |
48 | 47 | exlimdv | |
49 | 11 48 | biimtrid | |
50 | 49 | exlimdv | |
51 | 5 50 | biimtrid | |
52 | 51 | imp | |