| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrlem11.1 |  | 
						
							| 2 |  | frrlem11.2 |  | 
						
							| 3 |  | frrlem11.3 |  | 
						
							| 4 |  | frrlem11.4 |  | 
						
							| 5 |  | frrlem12.5 |  | 
						
							| 6 |  | frrlem12.6 |  | 
						
							| 7 |  | frrlem12.7 |  | 
						
							| 8 |  | elun |  | 
						
							| 9 |  | velsn |  | 
						
							| 10 | 9 | orbi2i |  | 
						
							| 11 | 8 10 | bitri |  | 
						
							| 12 |  | elinel2 |  | 
						
							| 13 | 1 | frrlem1 |  | 
						
							| 14 |  | breq1 |  | 
						
							| 15 |  | breq1 |  | 
						
							| 16 | 14 15 | anbi12d |  | 
						
							| 17 | 16 | imbi1d |  | 
						
							| 18 | 17 | imbi2d |  | 
						
							| 19 | 18 3 | chvarvv |  | 
						
							| 20 | 13 2 19 | frrlem10 |  | 
						
							| 21 | 12 20 | sylan2 |  | 
						
							| 22 | 21 | adantlr |  | 
						
							| 23 | 4 | fveq1i |  | 
						
							| 24 | 1 2 3 | frrlem9 |  | 
						
							| 25 | 24 | funresd |  | 
						
							| 26 |  | dmres |  | 
						
							| 27 |  | df-fn |  | 
						
							| 28 | 25 26 27 | sylanblrc |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 |  | vex |  | 
						
							| 32 |  | ovex |  | 
						
							| 33 | 31 32 | fnsn |  | 
						
							| 34 | 33 | a1i |  | 
						
							| 35 |  | eldifn |  | 
						
							| 36 |  | elinel2 |  | 
						
							| 37 | 35 36 | nsyl |  | 
						
							| 38 |  | disjsn |  | 
						
							| 39 | 37 38 | sylibr |  | 
						
							| 40 | 39 | adantl |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 |  | simpr |  | 
						
							| 43 |  | fvun1 |  | 
						
							| 44 | 30 34 41 42 43 | syl112anc |  | 
						
							| 45 | 23 44 | eqtrid |  | 
						
							| 46 |  | elinel1 |  | 
						
							| 47 | 46 | adantl |  | 
						
							| 48 | 47 | fvresd |  | 
						
							| 49 | 45 48 | eqtrd |  | 
						
							| 50 | 1 2 3 4 | frrlem11 |  | 
						
							| 51 |  | fnfun |  | 
						
							| 52 | 50 51 | syl |  | 
						
							| 53 | 52 | adantr |  | 
						
							| 54 |  | ssun1 |  | 
						
							| 55 | 54 4 | sseqtrri |  | 
						
							| 56 | 55 | a1i |  | 
						
							| 57 |  | eldifi |  | 
						
							| 58 | 57 7 | sylan2 |  | 
						
							| 59 |  | rspa |  | 
						
							| 60 | 58 46 59 | syl2an |  | 
						
							| 61 | 1 2 | frrlem8 |  | 
						
							| 62 | 12 61 | syl |  | 
						
							| 63 | 62 | adantl |  | 
						
							| 64 | 60 63 | ssind |  | 
						
							| 65 | 64 26 | sseqtrrdi |  | 
						
							| 66 |  | fun2ssres |  | 
						
							| 67 | 53 56 65 66 | syl3anc |  | 
						
							| 68 | 60 | resabs1d |  | 
						
							| 69 | 67 68 | eqtrd |  | 
						
							| 70 | 69 | oveq2d |  | 
						
							| 71 | 22 49 70 | 3eqtr4d |  | 
						
							| 72 | 71 | ex |  | 
						
							| 73 | 31 32 | fvsn |  | 
						
							| 74 | 4 | fveq1i |  | 
						
							| 75 | 33 | a1i |  | 
						
							| 76 |  | vsnid |  | 
						
							| 77 | 76 | a1i |  | 
						
							| 78 |  | fvun2 |  | 
						
							| 79 | 29 75 40 77 78 | syl112anc |  | 
						
							| 80 | 74 79 | eqtrid |  | 
						
							| 81 | 4 | reseq1i |  | 
						
							| 82 |  | resundir |  | 
						
							| 83 | 81 82 | eqtri |  | 
						
							| 84 | 57 6 | sylan2 |  | 
						
							| 85 | 84 | resabs1d |  | 
						
							| 86 |  | predfrirr |  | 
						
							| 87 | 5 86 | syl |  | 
						
							| 88 | 87 | adantr |  | 
						
							| 89 |  | ressnop0 |  | 
						
							| 90 | 88 89 | syl |  | 
						
							| 91 | 85 90 | uneq12d |  | 
						
							| 92 |  | un0 |  | 
						
							| 93 | 91 92 | eqtrdi |  | 
						
							| 94 | 83 93 | eqtrid |  | 
						
							| 95 | 94 | oveq2d |  | 
						
							| 96 | 73 80 95 | 3eqtr4a |  | 
						
							| 97 |  | fveq2 |  | 
						
							| 98 |  | id |  | 
						
							| 99 |  | predeq3 |  | 
						
							| 100 | 99 | reseq2d |  | 
						
							| 101 | 98 100 | oveq12d |  | 
						
							| 102 | 97 101 | eqeq12d |  | 
						
							| 103 | 96 102 | syl5ibrcom |  | 
						
							| 104 | 72 103 | jaod |  | 
						
							| 105 | 11 104 | biimtrid |  | 
						
							| 106 | 105 | 3impia |  |