Metamath Proof Explorer


Theorem frrusgrord

Description: If a nonempty finite friendship graph is k-regular, its order is k(k-1)+1. This corresponds to claim 3 in Huneke p. 2: "Next we claim that the number n of vertices in G is exactly k(k-1)+1.". Variant of frrusgrord0 , using the definition RegUSGraph ( df-rusgr ). (Contributed by Alexander van der Vekens, 25-Aug-2018) (Revised by AV, 26-May-2021) (Proof shortened by AV, 12-Jan-2022)

Ref Expression
Hypothesis frrusgrord0.v V = Vtx G
Assertion frrusgrord V Fin V G FriendGraph G RegUSGraph K V = K K 1 + 1

Proof

Step Hyp Ref Expression
1 frrusgrord0.v V = Vtx G
2 rusgrrgr G RegUSGraph K G RegGraph K
3 eqid VtxDeg G = VtxDeg G
4 1 3 rgrprop G RegGraph K K 0 * v V VtxDeg G v = K
5 2 4 syl G RegUSGraph K K 0 * v V VtxDeg G v = K
6 5 simprd G RegUSGraph K v V VtxDeg G v = K
7 1 frrusgrord0 G FriendGraph V Fin V v V VtxDeg G v = K V = K K 1 + 1
8 6 7 syl5 G FriendGraph V Fin V G RegUSGraph K V = K K 1 + 1
9 8 3expb G FriendGraph V Fin V G RegUSGraph K V = K K 1 + 1
10 9 expcom V Fin V G FriendGraph G RegUSGraph K V = K K 1 + 1
11 10 impd V Fin V G FriendGraph G RegUSGraph K V = K K 1 + 1