Metamath Proof Explorer


Theorem frrusgrord0

Description: If a nonempty finite friendship graph is k-regular, its order is k(k-1)+1. This corresponds to claim 3 in Huneke p. 2: "Next we claim that the number n of vertices in G is exactly k(k-1)+1.". (Contributed by Alexander van der Vekens, 11-Mar-2018) (Revised by AV, 26-May-2021) (Proof shortened by AV, 12-Jan-2022)

Ref Expression
Hypothesis frrusgrord0.v V = Vtx G
Assertion frrusgrord0 G FriendGraph V Fin V v V VtxDeg G v = K V = K K 1 + 1

Proof

Step Hyp Ref Expression
1 frrusgrord0.v V = Vtx G
2 frgrusgr G FriendGraph G USGraph
3 2 anim1i G FriendGraph V Fin G USGraph V Fin
4 1 isfusgr G FinUSGraph G USGraph V Fin
5 3 4 sylibr G FriendGraph V Fin G FinUSGraph
6 1 fusgreghash2wsp G FinUSGraph V v V VtxDeg G v = K 2 WSPathsN G = V K K 1
7 5 6 stoic3 G FriendGraph V Fin V v V VtxDeg G v = K 2 WSPathsN G = V K K 1
8 7 imp G FriendGraph V Fin V v V VtxDeg G v = K 2 WSPathsN G = V K K 1
9 1 frgrhash2wsp G FriendGraph V Fin 2 WSPathsN G = V V 1
10 9 eqcomd G FriendGraph V Fin V V 1 = 2 WSPathsN G
11 10 eqeq1d G FriendGraph V Fin V V 1 = V K K 1 2 WSPathsN G = V K K 1
12 11 3adant3 G FriendGraph V Fin V V V 1 = V K K 1 2 WSPathsN G = V K K 1
13 12 adantr G FriendGraph V Fin V v V VtxDeg G v = K V V 1 = V K K 1 2 WSPathsN G = V K K 1
14 1 frrusgrord0lem G FriendGraph V Fin V v V VtxDeg G v = K K V V 0
15 peano2cnm V V 1
16 15 3ad2ant2 K V V 0 V 1
17 kcnktkm1cn K K K 1
18 17 3ad2ant1 K V V 0 K K 1
19 simp2 K V V 0 V
20 simp3 K V V 0 V 0
21 16 18 19 20 mulcand K V V 0 V V 1 = V K K 1 V 1 = K K 1
22 npcan1 V V - 1 + 1 = V
23 oveq1 V 1 = K K 1 V - 1 + 1 = K K 1 + 1
24 22 23 sylan9req V V 1 = K K 1 V = K K 1 + 1
25 24 ex V V 1 = K K 1 V = K K 1 + 1
26 25 3ad2ant2 K V V 0 V 1 = K K 1 V = K K 1 + 1
27 21 26 sylbid K V V 0 V V 1 = V K K 1 V = K K 1 + 1
28 14 27 syl G FriendGraph V Fin V v V VtxDeg G v = K V V 1 = V K K 1 V = K K 1 + 1
29 13 28 sylbird G FriendGraph V Fin V v V VtxDeg G v = K 2 WSPathsN G = V K K 1 V = K K 1 + 1
30 8 29 mpd G FriendGraph V Fin V v V VtxDeg G v = K V = K K 1 + 1
31 30 ex G FriendGraph V Fin V v V VtxDeg G v = K V = K K 1 + 1