Metamath Proof Explorer


Theorem frrusgrord0lem

Description: Lemma for frrusgrord0 . (Contributed by AV, 12-Jan-2022)

Ref Expression
Hypothesis frrusgrord0.v V = Vtx G
Assertion frrusgrord0lem G FriendGraph V Fin V v V VtxDeg G v = K K V V 0

Proof

Step Hyp Ref Expression
1 frrusgrord0.v V = Vtx G
2 frgrusgr G FriendGraph G USGraph
3 2 anim1i G FriendGraph V Fin G USGraph V Fin
4 1 isfusgr G FinUSGraph G USGraph V Fin
5 3 4 sylibr G FriendGraph V Fin G FinUSGraph
6 eqid VtxDeg G = VtxDeg G
7 1 6 fusgrregdegfi G FinUSGraph V v V VtxDeg G v = K K 0
8 5 7 stoic3 G FriendGraph V Fin V v V VtxDeg G v = K K 0
9 8 imp G FriendGraph V Fin V v V VtxDeg G v = K K 0
10 9 nn0cnd G FriendGraph V Fin V v V VtxDeg G v = K K
11 hashcl V Fin V 0
12 11 nn0cnd V Fin V
13 12 3ad2ant2 G FriendGraph V Fin V V
14 13 adantr G FriendGraph V Fin V v V VtxDeg G v = K V
15 hasheq0 V Fin V = 0 V =
16 15 biimpd V Fin V = 0 V =
17 16 necon3d V Fin V V 0
18 17 imp V Fin V V 0
19 18 3adant1 G FriendGraph V Fin V V 0
20 19 adantr G FriendGraph V Fin V v V VtxDeg G v = K V 0
21 10 14 20 3jca G FriendGraph V Fin V v V VtxDeg G v = K K V V 0