Metamath Proof Explorer


Theorem frsuc

Description: The successor value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion frsuc B ω rec F A ω suc B = F rec F A ω B

Proof

Step Hyp Ref Expression
1 rdgdmlim Lim dom rec F A
2 limomss Lim dom rec F A ω dom rec F A
3 1 2 ax-mp ω dom rec F A
4 3 sseli B ω B dom rec F A
5 rdgsucg B dom rec F A rec F A suc B = F rec F A B
6 4 5 syl B ω rec F A suc B = F rec F A B
7 peano2b B ω suc B ω
8 fvres suc B ω rec F A ω suc B = rec F A suc B
9 7 8 sylbi B ω rec F A ω suc B = rec F A suc B
10 fvres B ω rec F A ω B = rec F A B
11 10 fveq2d B ω F rec F A ω B = F rec F A B
12 6 9 11 3eqtr4d B ω rec F A ω suc B = F rec F A ω B