Metamath Proof Explorer


Theorem frsuc

Description: The successor value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion frsuc BωrecFAωsucB=FrecFAωB

Proof

Step Hyp Ref Expression
1 rdgdmlim LimdomrecFA
2 limomss LimdomrecFAωdomrecFA
3 1 2 ax-mp ωdomrecFA
4 3 sseli BωBdomrecFA
5 rdgsucg BdomrecFArecFAsucB=FrecFAB
6 4 5 syl BωrecFAsucB=FrecFAB
7 peano2b BωsucBω
8 fvres sucBωrecFAωsucB=recFAsucB
9 7 8 sylbi BωrecFAωsucB=recFAsucB
10 fvres BωrecFAωB=recFAB
11 10 fveq2d BωFrecFAωB=FrecFAB
12 6 9 11 3eqtr4d BωrecFAωsucB=FrecFAωB