Metamath Proof Explorer


Theorem frsucmpt

Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation). (Contributed by NM, 14-Sep-2003) (Revised by Scott Fenton, 2-Nov-2011)

Ref Expression
Hypotheses frsucmpt.1 _ x A
frsucmpt.2 _ x B
frsucmpt.3 _ x D
frsucmpt.4 F = rec x V C A ω
frsucmpt.5 x = F B C = D
Assertion frsucmpt B ω D V F suc B = D

Proof

Step Hyp Ref Expression
1 frsucmpt.1 _ x A
2 frsucmpt.2 _ x B
3 frsucmpt.3 _ x D
4 frsucmpt.4 F = rec x V C A ω
5 frsucmpt.5 x = F B C = D
6 frsuc B ω rec x V C A ω suc B = x V C rec x V C A ω B
7 4 fveq1i F suc B = rec x V C A ω suc B
8 4 fveq1i F B = rec x V C A ω B
9 8 fveq2i x V C F B = x V C rec x V C A ω B
10 6 7 9 3eqtr4g B ω F suc B = x V C F B
11 fvex F B V
12 nfmpt1 _ x x V C
13 12 1 nfrdg _ x rec x V C A
14 nfcv _ x ω
15 13 14 nfres _ x rec x V C A ω
16 4 15 nfcxfr _ x F
17 16 2 nffv _ x F B
18 eqid x V C = x V C
19 17 3 5 18 fvmptf F B V D V x V C F B = D
20 11 19 mpan D V x V C F B = D
21 10 20 sylan9eq B ω D V F suc B = D