Metamath Proof Explorer


Theorem frsucmpt2w

Description: Version of frsucmpt2 with a disjoint variable condition, which does not require ax-13 . (Contributed by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses frsucmpt2w.1 F = rec x V C A ω
frsucmpt2w.2 y = x E = C
frsucmpt2w.3 y = F B E = D
Assertion frsucmpt2w B ω D V F suc B = D

Proof

Step Hyp Ref Expression
1 frsucmpt2w.1 F = rec x V C A ω
2 frsucmpt2w.2 y = x E = C
3 frsucmpt2w.3 y = F B E = D
4 nfcv _ y A
5 nfcv _ y B
6 nfcv _ y D
7 2 cbvmptv y V E = x V C
8 rdgeq1 y V E = x V C rec y V E A = rec x V C A
9 7 8 ax-mp rec y V E A = rec x V C A
10 9 reseq1i rec y V E A ω = rec x V C A ω
11 1 10 eqtr4i F = rec y V E A ω
12 4 5 6 11 3 frsucmpt B ω D V F suc B = D