Metamath Proof Explorer


Theorem frsucmptn

Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class D is a proper class). This is a technical lemma that can be used together with frsucmpt to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses frsucmpt.1 _ x A
frsucmpt.2 _ x B
frsucmpt.3 _ x D
frsucmpt.4 F = rec x V C A ω
frsucmpt.5 x = F B C = D
Assertion frsucmptn ¬ D V F suc B =

Proof

Step Hyp Ref Expression
1 frsucmpt.1 _ x A
2 frsucmpt.2 _ x B
3 frsucmpt.3 _ x D
4 frsucmpt.4 F = rec x V C A ω
5 frsucmpt.5 x = F B C = D
6 4 fveq1i F suc B = rec x V C A ω suc B
7 frfnom rec x V C A ω Fn ω
8 fndm rec x V C A ω Fn ω dom rec x V C A ω = ω
9 7 8 ax-mp dom rec x V C A ω = ω
10 9 eleq2i suc B dom rec x V C A ω suc B ω
11 peano2b B ω suc B ω
12 frsuc B ω rec x V C A ω suc B = x V C rec x V C A ω B
13 4 fveq1i F B = rec x V C A ω B
14 13 fveq2i x V C F B = x V C rec x V C A ω B
15 12 14 syl6eqr B ω rec x V C A ω suc B = x V C F B
16 nfmpt1 _ x x V C
17 16 1 nfrdg _ x rec x V C A
18 nfcv _ x ω
19 17 18 nfres _ x rec x V C A ω
20 4 19 nfcxfr _ x F
21 20 2 nffv _ x F B
22 eqid x V C = x V C
23 21 3 5 22 fvmptnf ¬ D V x V C F B =
24 15 23 sylan9eqr ¬ D V B ω rec x V C A ω suc B =
25 24 ex ¬ D V B ω rec x V C A ω suc B =
26 11 25 syl5bir ¬ D V suc B ω rec x V C A ω suc B =
27 10 26 syl5bi ¬ D V suc B dom rec x V C A ω rec x V C A ω suc B =
28 ndmfv ¬ suc B dom rec x V C A ω rec x V C A ω suc B =
29 27 28 pm2.61d1 ¬ D V rec x V C A ω suc B =
30 6 29 syl5eq ¬ D V F suc B =