Metamath Proof Explorer


Theorem frusgrnn0

Description: In a nonempty finite k-regular simple graph, the degree of each vertex is finite. (Contributed by AV, 7-May-2021)

Ref Expression
Hypothesis frusgrnn0.v V = Vtx G
Assertion frusgrnn0 G FinUSGraph G RegUSGraph K V K 0

Proof

Step Hyp Ref Expression
1 frusgrnn0.v V = Vtx G
2 3simpb G FinUSGraph G RegUSGraph K V G FinUSGraph V
3 eqid VtxDeg G = VtxDeg G
4 1 3 rusgrprop0 G RegUSGraph K G USGraph K 0 * v V VtxDeg G v = K
5 4 simp3d G RegUSGraph K v V VtxDeg G v = K
6 5 3ad2ant2 G FinUSGraph G RegUSGraph K V v V VtxDeg G v = K
7 1 3 fusgrregdegfi G FinUSGraph V v V VtxDeg G v = K K 0
8 2 6 7 sylc G FinUSGraph G RegUSGraph K V K 0