Metamath Proof Explorer


Theorem frxp3

Description: Give well-foundedness over a triple Cartesian product. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Hypotheses xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
frxp3.1 φ R Fr A
frxp3.2 φ S Fr B
frxp3.3 φ T Fr C
Assertion frxp3 φ U Fr A × B × C

Proof

Step Hyp Ref Expression
1 xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
2 frxp3.1 φ R Fr A
3 frxp3.2 φ S Fr B
4 frxp3.3 φ T Fr C
5 2 adantr φ s A × B × C s R Fr A
6 dmss s A × B × C dom s dom A × B × C
7 6 ad2antrl φ s A × B × C s dom s dom A × B × C
8 dmxpss dom A × B × C A × B
9 7 8 sstrdi φ s A × B × C s dom s A × B
10 dmss dom s A × B dom dom s dom A × B
11 9 10 syl φ s A × B × C s dom dom s dom A × B
12 dmxpss dom A × B A
13 11 12 sstrdi φ s A × B × C s dom dom s A
14 vex s V
15 14 dmex dom s V
16 15 dmex dom dom s V
17 16 a1i φ s A × B × C s dom dom s V
18 relxp Rel A × B × C
19 relss s A × B × C Rel A × B × C Rel s
20 18 19 mpi s A × B × C Rel s
21 20 adantl φ s A × B × C Rel s
22 reldm0 Rel s s = dom s =
23 21 22 syl φ s A × B × C s = dom s =
24 relxp Rel A × B
25 relss dom A × B × C A × B Rel A × B Rel dom A × B × C
26 8 24 25 mp2 Rel dom A × B × C
27 relss dom s dom A × B × C Rel dom A × B × C Rel dom s
28 6 26 27 mpisyl s A × B × C Rel dom s
29 28 adantl φ s A × B × C Rel dom s
30 reldm0 Rel dom s dom s = dom dom s =
31 29 30 syl φ s A × B × C dom s = dom dom s =
32 23 31 bitrd φ s A × B × C s = dom dom s =
33 32 necon3bid φ s A × B × C s dom dom s
34 33 biimpa φ s A × B × C s dom dom s
35 34 anasss φ s A × B × C s dom dom s
36 5 13 17 35 frd φ s A × B × C s a dom dom s d dom dom s ¬ d R a
37 3 ad2antrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a S Fr B
38 imassrn dom s a ran dom s
39 rnss dom s A × B ran dom s ran A × B
40 9 39 syl φ s A × B × C s ran dom s ran A × B
41 rnxpss ran A × B B
42 40 41 sstrdi φ s A × B × C s ran dom s B
43 38 42 sstrid φ s A × B × C s dom s a B
44 43 adantr φ s A × B × C s a dom dom s d dom dom s ¬ d R a dom s a B
45 15 imaex dom s a V
46 45 a1i φ s A × B × C s a dom dom s d dom dom s ¬ d R a dom s a V
47 imadisj dom s a = dom dom s a =
48 disjsn dom dom s a = ¬ a dom dom s
49 47 48 bitri dom s a = ¬ a dom dom s
50 49 necon2abii a dom dom s dom s a
51 50 biimpi a dom dom s dom s a
52 51 ad2antrl φ s A × B × C s a dom dom s d dom dom s ¬ d R a dom s a
53 37 44 46 52 frd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b
54 4 ad3antrrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b T Fr C
55 imassrn s a b ran s
56 rnss s A × B × C ran s ran A × B × C
57 56 ad2antrl φ s A × B × C s ran s ran A × B × C
58 rnxpss ran A × B × C C
59 57 58 sstrdi φ s A × B × C s ran s C
60 55 59 sstrid φ s A × B × C s s a b C
61 60 ad2antrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b s a b C
62 14 imaex s a b V
63 62 a1i φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b s a b V
64 simprl φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b b dom s a
65 vex a V
66 vex b V
67 65 66 elimasn b dom s a a b dom s
68 64 67 sylib φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b a b dom s
69 imadisj s a b = dom s a b =
70 disjsn dom s a b = ¬ a b dom s
71 69 70 bitri s a b = ¬ a b dom s
72 71 necon2abii a b dom s s a b
73 68 72 sylib φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b s a b
74 54 61 63 73 frd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c
75 df-ot a b c = a b c
76 simprl φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c c s a b
77 opex a b V
78 vex c V
79 77 78 elimasn c s a b a b c s
80 76 79 sylib φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b c s
81 75 80 eqeltrid φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b c s
82 simplrl φ s A × B × C s a dom dom s d dom dom s ¬ d R a s A × B × C
83 82 ad2antrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c s A × B × C
84 el2xpss q s s A × B × C g h i q = g h i
85 84 ancoms s A × B × C q s g h i q = g h i
86 83 85 sylan φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s g h i q = g h i
87 df-ne i c ¬ i = c
88 87 con2bii i = c ¬ i c
89 88 biimpi i = c ¬ i c
90 89 intnand i = c ¬ g R a g = a h S b h = b i T c i = c i c
91 90 adantl φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i = c ¬ g R a g = a h S b h = b i T c i = c i c
92 breq1 f = i f T c i T c
93 92 notbid f = i ¬ f T c ¬ i T c
94 simplrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s f s a b ¬ f T c
95 94 adantr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c f s a b ¬ f T c
96 df-ot a b i = a b i
97 simplr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c a b i s
98 96 97 eqeltrrid φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c a b i s
99 vex i V
100 77 99 elimasn i s a b a b i s
101 98 100 sylibr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c i s a b
102 93 95 101 rspcdva φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c ¬ i T c
103 simpr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c i c
104 103 neneqd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c ¬ i = c
105 ioran ¬ i T c i = c ¬ i T c ¬ i = c
106 102 104 105 sylanbrc φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c ¬ i T c i = c
107 106 intn3an3d φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c ¬ g R a g = a h S b h = b i T c i = c
108 107 intnanrd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s i c ¬ g R a g = a h S b h = b i T c i = c i c
109 91 108 pm2.61dane φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s ¬ g R a g = a h S b h = b i T c i = c i c
110 oteq2 h = b a h i = a b i
111 110 eleq1d h = b a h i s a b i s
112 111 anbi2d h = b φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s
113 neeq1 h = b h b b b
114 113 orbi1d h = b h b i c b b i c
115 neirr ¬ b b
116 orel1 ¬ b b b b i c i c
117 115 116 ax-mp b b i c i c
118 olc i c b b i c
119 117 118 impbii b b i c i c
120 114 119 bitrdi h = b h b i c i c
121 120 anbi2d h = b g R a g = a h S b h = b i T c i = c h b i c g R a g = a h S b h = b i T c i = c i c
122 121 notbid h = b ¬ g R a g = a h S b h = b i T c i = c h b i c ¬ g R a g = a h S b h = b i T c i = c i c
123 112 122 imbi12d h = b φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s ¬ g R a g = a h S b h = b i T c i = c h b i c φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a b i s ¬ g R a g = a h S b h = b i T c i = c i c
124 109 123 mpbiri h = b φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s ¬ g R a g = a h S b h = b i T c i = c h b i c
125 124 impcom φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h = b ¬ g R a g = a h S b h = b i T c i = c h b i c
126 breq1 e = h e S b h S b
127 126 notbid e = h ¬ e S b ¬ h S b
128 simplrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c e dom s a ¬ e S b
129 128 ad2antrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b e dom s a ¬ e S b
130 df-ot a h i = a h i
131 simplr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b a h i s
132 130 131 eqeltrrid φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b a h i s
133 opex a h V
134 133 99 opeldm a h i s a h dom s
135 132 134 syl φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b a h dom s
136 vex h V
137 65 136 elimasn h dom s a a h dom s
138 135 137 sylibr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b h dom s a
139 127 129 138 rspcdva φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b ¬ h S b
140 simpr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b h b
141 140 neneqd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b ¬ h = b
142 ioran ¬ h S b h = b ¬ h S b ¬ h = b
143 139 141 142 sylanbrc φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b ¬ h S b h = b
144 143 intn3an2d φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b ¬ g R a g = a h S b h = b i T c i = c
145 144 intnanrd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s h b ¬ g R a g = a h S b h = b i T c i = c h b i c
146 125 145 pm2.61dane φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s ¬ g R a g = a h S b h = b i T c i = c h b i c
147 oteq1 g = a g h i = a h i
148 147 eleq1d g = a g h i s a h i s
149 148 anbi2d g = a φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s
150 neeq1 g = a g a a a
151 biidd g = a h b h b
152 biidd g = a i c i c
153 150 151 152 3orbi123d g = a g a h b i c a a h b i c
154 3orass a a h b i c a a h b i c
155 neirr ¬ a a
156 orel1 ¬ a a a a h b i c h b i c
157 155 156 ax-mp a a h b i c h b i c
158 olc h b i c a a h b i c
159 157 158 impbii a a h b i c h b i c
160 154 159 bitri a a h b i c h b i c
161 153 160 bitrdi g = a g a h b i c h b i c
162 161 anbi2d g = a g R a g = a h S b h = b i T c i = c g a h b i c g R a g = a h S b h = b i T c i = c h b i c
163 162 notbid g = a ¬ g R a g = a h S b h = b i T c i = c g a h b i c ¬ g R a g = a h S b h = b i T c i = c h b i c
164 149 163 imbi12d g = a φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s ¬ g R a g = a h S b h = b i T c i = c g a h b i c φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c a h i s ¬ g R a g = a h S b h = b i T c i = c h b i c
165 146 164 mpbiri g = a φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s ¬ g R a g = a h S b h = b i T c i = c g a h b i c
166 165 impcom φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g = a ¬ g R a g = a h S b h = b i T c i = c g a h b i c
167 breq1 d = g d R a g R a
168 167 notbid d = g ¬ d R a ¬ g R a
169 simplrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b d dom dom s ¬ d R a
170 169 ad3antrrr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a d dom dom s ¬ d R a
171 df-ot g h i = g h i
172 simplr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a g h i s
173 171 172 eqeltrrid φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a g h i s
174 opex g h V
175 174 99 opeldm g h i s g h dom s
176 vex g V
177 176 136 opeldm g h dom s g dom dom s
178 173 175 177 3syl φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a g dom dom s
179 168 170 178 rspcdva φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a ¬ g R a
180 simpr φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a g a
181 180 neneqd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a ¬ g = a
182 ioran ¬ g R a g = a ¬ g R a ¬ g = a
183 179 181 182 sylanbrc φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a ¬ g R a g = a
184 183 intn3an1d φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a ¬ g R a g = a h S b h = b i T c i = c
185 184 intnanrd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s g a ¬ g R a g = a h S b h = b i T c i = c g a h b i c
186 166 185 pm2.61dane φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s ¬ g R a g = a h S b h = b i T c i = c g a h b i c
187 186 intn3an3d φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s ¬ g A h B i C a A b B c C g R a g = a h S b h = b i T c i = c g a h b i c
188 eleq1 q = g h i q s g h i s
189 188 anbi2d q = g h i φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s
190 breq1 q = g h i q U a b c g h i U a b c
191 1 xpord3lem g h i U a b c g A h B i C a A b B c C g R a g = a h S b h = b i T c i = c g a h b i c
192 190 191 bitrdi q = g h i q U a b c g A h B i C a A b B c C g R a g = a h S b h = b i T c i = c g a h b i c
193 192 notbid q = g h i ¬ q U a b c ¬ g A h B i C a A b B c C g R a g = a h S b h = b i T c i = c g a h b i c
194 189 193 imbi12d q = g h i φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s ¬ q U a b c φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c g h i s ¬ g A h B i C a A b B c C g R a g = a h S b h = b i T c i = c g a h b i c
195 187 194 mpbiri q = g h i φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s ¬ q U a b c
196 195 com12 φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s q = g h i ¬ q U a b c
197 196 exlimdv φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s i q = g h i ¬ q U a b c
198 197 exlimdvv φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s g h i q = g h i ¬ q U a b c
199 86 198 mpd φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s ¬ q U a b c
200 199 ralrimiva φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c q s ¬ q U a b c
201 breq2 p = a b c q U p q U a b c
202 201 notbid p = a b c ¬ q U p ¬ q U a b c
203 202 ralbidv p = a b c q s ¬ q U p q s ¬ q U a b c
204 203 rspcev a b c s q s ¬ q U a b c p s q s ¬ q U p
205 81 200 204 syl2anc φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b c s a b f s a b ¬ f T c p s q s ¬ q U p
206 74 205 rexlimddv φ s A × B × C s a dom dom s d dom dom s ¬ d R a b dom s a e dom s a ¬ e S b p s q s ¬ q U p
207 53 206 rexlimddv φ s A × B × C s a dom dom s d dom dom s ¬ d R a p s q s ¬ q U p
208 36 207 rexlimddv φ s A × B × C s p s q s ¬ q U p
209 208 ex φ s A × B × C s p s q s ¬ q U p
210 209 alrimiv φ s s A × B × C s p s q s ¬ q U p
211 df-fr U Fr A × B × C s s A × B × C s p s q s ¬ q U p
212 210 211 sylibr φ U Fr A × B × C