Metamath Proof Explorer


Theorem fseqdom

Description: One half of fseqen . (Contributed by Mario Carneiro, 18-Nov-2014)

Ref Expression
Assertion fseqdom A V ω × A n ω A n

Proof

Step Hyp Ref Expression
1 omex ω V
2 ovex A n V
3 1 2 iunex n ω A n V
4 xp1st x ω × A 1 st x ω
5 peano2 1 st x ω suc 1 st x ω
6 4 5 syl x ω × A suc 1 st x ω
7 xp2nd x ω × A 2 nd x A
8 fconst6g 2 nd x A suc 1 st x × 2 nd x : suc 1 st x A
9 7 8 syl x ω × A suc 1 st x × 2 nd x : suc 1 st x A
10 9 adantl A V x ω × A suc 1 st x × 2 nd x : suc 1 st x A
11 elmapg A V suc 1 st x ω suc 1 st x × 2 nd x A suc 1 st x suc 1 st x × 2 nd x : suc 1 st x A
12 6 11 sylan2 A V x ω × A suc 1 st x × 2 nd x A suc 1 st x suc 1 st x × 2 nd x : suc 1 st x A
13 10 12 mpbird A V x ω × A suc 1 st x × 2 nd x A suc 1 st x
14 oveq2 n = suc 1 st x A n = A suc 1 st x
15 14 eliuni suc 1 st x ω suc 1 st x × 2 nd x A suc 1 st x suc 1 st x × 2 nd x n ω A n
16 6 13 15 syl2an2 A V x ω × A suc 1 st x × 2 nd x n ω A n
17 16 ex A V x ω × A suc 1 st x × 2 nd x n ω A n
18 nsuceq0 suc 1 st x
19 fvex 2 nd x V
20 19 snnz 2 nd x
21 xp11 suc 1 st x 2 nd x suc 1 st x × 2 nd x = suc 1 st y × 2 nd y suc 1 st x = suc 1 st y 2 nd x = 2 nd y
22 18 20 21 mp2an suc 1 st x × 2 nd x = suc 1 st y × 2 nd y suc 1 st x = suc 1 st y 2 nd x = 2 nd y
23 xp1st y ω × A 1 st y ω
24 peano4 1 st x ω 1 st y ω suc 1 st x = suc 1 st y 1 st x = 1 st y
25 4 23 24 syl2an x ω × A y ω × A suc 1 st x = suc 1 st y 1 st x = 1 st y
26 sneqbg 2 nd x V 2 nd x = 2 nd y 2 nd x = 2 nd y
27 19 26 mp1i x ω × A y ω × A 2 nd x = 2 nd y 2 nd x = 2 nd y
28 25 27 anbi12d x ω × A y ω × A suc 1 st x = suc 1 st y 2 nd x = 2 nd y 1 st x = 1 st y 2 nd x = 2 nd y
29 22 28 bitrid x ω × A y ω × A suc 1 st x × 2 nd x = suc 1 st y × 2 nd y 1 st x = 1 st y 2 nd x = 2 nd y
30 xpopth x ω × A y ω × A 1 st x = 1 st y 2 nd x = 2 nd y x = y
31 29 30 bitrd x ω × A y ω × A suc 1 st x × 2 nd x = suc 1 st y × 2 nd y x = y
32 31 a1i A V x ω × A y ω × A suc 1 st x × 2 nd x = suc 1 st y × 2 nd y x = y
33 17 32 dom2d A V n ω A n V ω × A n ω A n
34 3 33 mpi A V ω × A n ω A n