Metamath Proof Explorer


Theorem fseqenlem1

Description: Lemma for fseqen . (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Hypotheses fseqenlem.a φ A V
fseqenlem.b φ B A
fseqenlem.f φ F : A × A 1-1 onto A
fseqenlem.g G = seq ω n V , f V x A suc n f x n F x n B
Assertion fseqenlem1 φ C ω G C : A C 1-1 A

Proof

Step Hyp Ref Expression
1 fseqenlem.a φ A V
2 fseqenlem.b φ B A
3 fseqenlem.f φ F : A × A 1-1 onto A
4 fseqenlem.g G = seq ω n V , f V x A suc n f x n F x n B
5 fveq2 y = C G y = G C
6 f1eq1 G y = G C G y : A y 1-1 A G C : A y 1-1 A
7 5 6 syl y = C G y : A y 1-1 A G C : A y 1-1 A
8 oveq2 y = C A y = A C
9 f1eq2 A y = A C G C : A y 1-1 A G C : A C 1-1 A
10 8 9 syl y = C G C : A y 1-1 A G C : A C 1-1 A
11 7 10 bitrd y = C G y : A y 1-1 A G C : A C 1-1 A
12 11 imbi2d y = C φ G y : A y 1-1 A φ G C : A C 1-1 A
13 fveq2 y = G y = G
14 snex B V
15 4 seqom0g B V G = B
16 14 15 ax-mp G = B
17 13 16 eqtrdi y = G y = B
18 f1eq1 G y = B G y : A y 1-1 A B : A y 1-1 A
19 17 18 syl y = G y : A y 1-1 A B : A y 1-1 A
20 oveq2 y = A y = A
21 f1eq2 A y = A B : A y 1-1 A B : A 1-1 A
22 20 21 syl y = B : A y 1-1 A B : A 1-1 A
23 19 22 bitrd y = G y : A y 1-1 A B : A 1-1 A
24 fveq2 y = m G y = G m
25 f1eq1 G y = G m G y : A y 1-1 A G m : A y 1-1 A
26 24 25 syl y = m G y : A y 1-1 A G m : A y 1-1 A
27 oveq2 y = m A y = A m
28 f1eq2 A y = A m G m : A y 1-1 A G m : A m 1-1 A
29 27 28 syl y = m G m : A y 1-1 A G m : A m 1-1 A
30 26 29 bitrd y = m G y : A y 1-1 A G m : A m 1-1 A
31 fveq2 y = suc m G y = G suc m
32 f1eq1 G y = G suc m G y : A y 1-1 A G suc m : A y 1-1 A
33 31 32 syl y = suc m G y : A y 1-1 A G suc m : A y 1-1 A
34 oveq2 y = suc m A y = A suc m
35 f1eq2 A y = A suc m G suc m : A y 1-1 A G suc m : A suc m 1-1 A
36 34 35 syl y = suc m G suc m : A y 1-1 A G suc m : A suc m 1-1 A
37 33 36 bitrd y = suc m G y : A y 1-1 A G suc m : A suc m 1-1 A
38 0ex V
39 f1osng V B A B : 1-1 onto B
40 38 2 39 sylancr φ B : 1-1 onto B
41 f1of1 B : 1-1 onto B B : 1-1 B
42 40 41 syl φ B : 1-1 B
43 2 snssd φ B A
44 f1ss B : 1-1 B B A B : 1-1 A
45 42 43 44 syl2anc φ B : 1-1 A
46 map0e A V A = 1 𝑜
47 1 46 syl φ A = 1 𝑜
48 df1o2 1 𝑜 =
49 47 48 eqtrdi φ A =
50 f1eq2 A = B : A 1-1 A B : 1-1 A
51 49 50 syl φ B : A 1-1 A B : 1-1 A
52 45 51 mpbird φ B : A 1-1 A
53 4 seqomsuc m ω G suc m = m n V , f V x A suc n f x n F x n G m
54 53 ad2antrl φ m ω G m : A m 1-1 A G suc m = m n V , f V x A suc n f x n F x n G m
55 vex m V
56 fvex G m V
57 reseq1 x = z x a = z a
58 57 fveq2d x = z b x a = b z a
59 fveq1 x = z x a = z a
60 58 59 oveq12d x = z b x a F x a = b z a F z a
61 60 cbvmptv x A suc a b x a F x a = z A suc a b z a F z a
62 suceq a = m suc a = suc m
63 62 adantr a = m b = G m suc a = suc m
64 63 oveq2d a = m b = G m A suc a = A suc m
65 simpr a = m b = G m b = G m
66 reseq2 a = m z a = z m
67 66 adantr a = m b = G m z a = z m
68 65 67 fveq12d a = m b = G m b z a = G m z m
69 simpl a = m b = G m a = m
70 69 fveq2d a = m b = G m z a = z m
71 68 70 oveq12d a = m b = G m b z a F z a = G m z m F z m
72 64 71 mpteq12dv a = m b = G m z A suc a b z a F z a = z A suc m G m z m F z m
73 61 72 eqtrid a = m b = G m x A suc a b x a F x a = z A suc m G m z m F z m
74 nfcv _ a x A suc n f x n F x n
75 nfcv _ b x A suc n f x n F x n
76 nfcv _ n x A suc a b x a F x a
77 nfcv _ f x A suc a b x a F x a
78 suceq n = a suc n = suc a
79 78 adantr n = a f = b suc n = suc a
80 79 oveq2d n = a f = b A suc n = A suc a
81 simpr n = a f = b f = b
82 reseq2 n = a x n = x a
83 82 adantr n = a f = b x n = x a
84 81 83 fveq12d n = a f = b f x n = b x a
85 simpl n = a f = b n = a
86 85 fveq2d n = a f = b x n = x a
87 84 86 oveq12d n = a f = b f x n F x n = b x a F x a
88 80 87 mpteq12dv n = a f = b x A suc n f x n F x n = x A suc a b x a F x a
89 74 75 76 77 88 cbvmpo n V , f V x A suc n f x n F x n = a V , b V x A suc a b x a F x a
90 ovex A suc m V
91 90 mptex z A suc m G m z m F z m V
92 73 89 91 ovmpoa m V G m V m n V , f V x A suc n f x n F x n G m = z A suc m G m z m F z m
93 55 56 92 mp2an m n V , f V x A suc n f x n F x n G m = z A suc m G m z m F z m
94 54 93 eqtrdi φ m ω G m : A m 1-1 A G suc m = z A suc m G m z m F z m
95 3 ad2antrr φ m ω G m : A m 1-1 A z A suc m F : A × A 1-1 onto A
96 f1of F : A × A 1-1 onto A F : A × A A
97 95 96 syl φ m ω G m : A m 1-1 A z A suc m F : A × A A
98 f1f G m : A m 1-1 A G m : A m A
99 98 ad2antll φ m ω G m : A m 1-1 A G m : A m A
100 99 adantr φ m ω G m : A m 1-1 A z A suc m G m : A m A
101 elmapi z A suc m z : suc m A
102 101 adantl φ m ω G m : A m 1-1 A z A suc m z : suc m A
103 sssucid m suc m
104 fssres z : suc m A m suc m z m : m A
105 102 103 104 sylancl φ m ω G m : A m 1-1 A z A suc m z m : m A
106 1 ad2antrr φ m ω G m : A m 1-1 A z A suc m A V
107 elmapg A V m V z m A m z m : m A
108 106 55 107 sylancl φ m ω G m : A m 1-1 A z A suc m z m A m z m : m A
109 105 108 mpbird φ m ω G m : A m 1-1 A z A suc m z m A m
110 100 109 ffvelrnd φ m ω G m : A m 1-1 A z A suc m G m z m A
111 55 sucid m suc m
112 ffvelrn z : suc m A m suc m z m A
113 102 111 112 sylancl φ m ω G m : A m 1-1 A z A suc m z m A
114 97 110 113 fovrnd φ m ω G m : A m 1-1 A z A suc m G m z m F z m A
115 94 114 fmpt3d φ m ω G m : A m 1-1 A G suc m : A suc m A
116 elmapi a A suc m a : suc m A
117 116 ad2antrl φ m ω G m : A m 1-1 A a A suc m b A suc m a : suc m A
118 117 ffnd φ m ω G m : A m 1-1 A a A suc m b A suc m a Fn suc m
119 elmapi b A suc m b : suc m A
120 119 ad2antll φ m ω G m : A m 1-1 A a A suc m b A suc m b : suc m A
121 120 ffnd φ m ω G m : A m 1-1 A a A suc m b A suc m b Fn suc m
122 103 a1i φ m ω G m : A m 1-1 A a A suc m b A suc m m suc m
123 fvreseq a Fn suc m b Fn suc m m suc m a m = b m x m a x = b x
124 118 121 122 123 syl21anc φ m ω G m : A m 1-1 A a A suc m b A suc m a m = b m x m a x = b x
125 fveq2 x = m a x = a m
126 fveq2 x = m b x = b m
127 125 126 eqeq12d x = m a x = b x a m = b m
128 55 127 ralsn x m a x = b x a m = b m
129 128 bicomi a m = b m x m a x = b x
130 129 a1i φ m ω G m : A m 1-1 A a A suc m b A suc m a m = b m x m a x = b x
131 124 130 anbi12d φ m ω G m : A m 1-1 A a A suc m b A suc m a m = b m a m = b m x m a x = b x x m a x = b x
132 94 adantr φ m ω G m : A m 1-1 A a A suc m b A suc m G suc m = z A suc m G m z m F z m
133 132 fveq1d φ m ω G m : A m 1-1 A a A suc m b A suc m G suc m a = z A suc m G m z m F z m a
134 reseq1 z = a z m = a m
135 134 fveq2d z = a G m z m = G m a m
136 fveq1 z = a z m = a m
137 135 136 oveq12d z = a G m z m F z m = G m a m F a m
138 eqid z A suc m G m z m F z m = z A suc m G m z m F z m
139 ovex G m a m F a m V
140 137 138 139 fvmpt a A suc m z A suc m G m z m F z m a = G m a m F a m
141 140 ad2antrl φ m ω G m : A m 1-1 A a A suc m b A suc m z A suc m G m z m F z m a = G m a m F a m
142 133 141 eqtrd φ m ω G m : A m 1-1 A a A suc m b A suc m G suc m a = G m a m F a m
143 df-ov G m a m F a m = F G m a m a m
144 142 143 eqtrdi φ m ω G m : A m 1-1 A a A suc m b A suc m G suc m a = F G m a m a m
145 132 fveq1d φ m ω G m : A m 1-1 A a A suc m b A suc m G suc m b = z A suc m G m z m F z m b
146 reseq1 z = b z m = b m
147 146 fveq2d z = b G m z m = G m b m
148 fveq1 z = b z m = b m
149 147 148 oveq12d z = b G m z m F z m = G m b m F b m
150 ovex G m b m F b m V
151 149 138 150 fvmpt b A suc m z A suc m G m z m F z m b = G m b m F b m
152 151 ad2antll φ m ω G m : A m 1-1 A a A suc m b A suc m z A suc m G m z m F z m b = G m b m F b m
153 145 152 eqtrd φ m ω G m : A m 1-1 A a A suc m b A suc m G suc m b = G m b m F b m
154 df-ov G m b m F b m = F G m b m b m
155 153 154 eqtrdi φ m ω G m : A m 1-1 A a A suc m b A suc m G suc m b = F G m b m b m
156 144 155 eqeq12d φ m ω G m : A m 1-1 A a A suc m b A suc m G suc m a = G suc m b F G m a m a m = F G m b m b m
157 3 ad2antrr φ m ω G m : A m 1-1 A a A suc m b A suc m F : A × A 1-1 onto A
158 f1of1 F : A × A 1-1 onto A F : A × A 1-1 A
159 157 158 syl φ m ω G m : A m 1-1 A a A suc m b A suc m F : A × A 1-1 A
160 99 adantr φ m ω G m : A m 1-1 A a A suc m b A suc m G m : A m A
161 fssres a : suc m A m suc m a m : m A
162 117 103 161 sylancl φ m ω G m : A m 1-1 A a A suc m b A suc m a m : m A
163 1 ad2antrr φ m ω G m : A m 1-1 A a A suc m b A suc m A V
164 elmapg A V m V a m A m a m : m A
165 163 55 164 sylancl φ m ω G m : A m 1-1 A a A suc m b A suc m a m A m a m : m A
166 162 165 mpbird φ m ω G m : A m 1-1 A a A suc m b A suc m a m A m
167 160 166 ffvelrnd φ m ω G m : A m 1-1 A a A suc m b A suc m G m a m A
168 ffvelrn a : suc m A m suc m a m A
169 117 111 168 sylancl φ m ω G m : A m 1-1 A a A suc m b A suc m a m A
170 167 169 opelxpd φ m ω G m : A m 1-1 A a A suc m b A suc m G m a m a m A × A
171 fssres b : suc m A m suc m b m : m A
172 120 103 171 sylancl φ m ω G m : A m 1-1 A a A suc m b A suc m b m : m A
173 elmapg A V m V b m A m b m : m A
174 163 55 173 sylancl φ m ω G m : A m 1-1 A a A suc m b A suc m b m A m b m : m A
175 172 174 mpbird φ m ω G m : A m 1-1 A a A suc m b A suc m b m A m
176 160 175 ffvelrnd φ m ω G m : A m 1-1 A a A suc m b A suc m G m b m A
177 ffvelrn b : suc m A m suc m b m A
178 120 111 177 sylancl φ m ω G m : A m 1-1 A a A suc m b A suc m b m A
179 176 178 opelxpd φ m ω G m : A m 1-1 A a A suc m b A suc m G m b m b m A × A
180 f1fveq F : A × A 1-1 A G m a m a m A × A G m b m b m A × A F G m a m a m = F G m b m b m G m a m a m = G m b m b m
181 159 170 179 180 syl12anc φ m ω G m : A m 1-1 A a A suc m b A suc m F G m a m a m = F G m b m b m G m a m a m = G m b m b m
182 fvex G m a m V
183 fvex a m V
184 182 183 opth G m a m a m = G m b m b m G m a m = G m b m a m = b m
185 181 184 bitrdi φ m ω G m : A m 1-1 A a A suc m b A suc m F G m a m a m = F G m b m b m G m a m = G m b m a m = b m
186 simplrr φ m ω G m : A m 1-1 A a A suc m b A suc m G m : A m 1-1 A
187 f1fveq G m : A m 1-1 A a m A m b m A m G m a m = G m b m a m = b m
188 186 166 175 187 syl12anc φ m ω G m : A m 1-1 A a A suc m b A suc m G m a m = G m b m a m = b m
189 188 anbi1d φ m ω G m : A m 1-1 A a A suc m b A suc m G m a m = G m b m a m = b m a m = b m a m = b m
190 156 185 189 3bitrd φ m ω G m : A m 1-1 A a A suc m b A suc m G suc m a = G suc m b a m = b m a m = b m
191 eqfnfv a Fn suc m b Fn suc m a = b x suc m a x = b x
192 118 121 191 syl2anc φ m ω G m : A m 1-1 A a A suc m b A suc m a = b x suc m a x = b x
193 df-suc suc m = m m
194 193 raleqi x suc m a x = b x x m m a x = b x
195 ralunb x m m a x = b x x m a x = b x x m a x = b x
196 194 195 bitri x suc m a x = b x x m a x = b x x m a x = b x
197 192 196 bitrdi φ m ω G m : A m 1-1 A a A suc m b A suc m a = b x m a x = b x x m a x = b x
198 131 190 197 3bitr4d φ m ω G m : A m 1-1 A a A suc m b A suc m G suc m a = G suc m b a = b
199 198 biimpd φ m ω G m : A m 1-1 A a A suc m b A suc m G suc m a = G suc m b a = b
200 199 ralrimivva φ m ω G m : A m 1-1 A a A suc m b A suc m G suc m a = G suc m b a = b
201 dff13 G suc m : A suc m 1-1 A G suc m : A suc m A a A suc m b A suc m G suc m a = G suc m b a = b
202 115 200 201 sylanbrc φ m ω G m : A m 1-1 A G suc m : A suc m 1-1 A
203 202 expr φ m ω G m : A m 1-1 A G suc m : A suc m 1-1 A
204 203 expcom m ω φ G m : A m 1-1 A G suc m : A suc m 1-1 A
205 23 30 37 52 204 finds2 y ω φ G y : A y 1-1 A
206 12 205 vtoclga C ω φ G C : A C 1-1 A
207 206 impcom φ C ω G C : A C 1-1 A