Step |
Hyp |
Ref |
Expression |
1 |
|
fseqenlem.a |
|
2 |
|
fseqenlem.b |
|
3 |
|
fseqenlem.f |
|
4 |
|
fseqenlem.g |
|
5 |
|
fseqenlem.k |
|
6 |
|
eliun |
|
7 |
|
elmapi |
|
8 |
7
|
ad2antll |
|
9 |
8
|
fdmd |
|
10 |
|
simprl |
|
11 |
9 10
|
eqeltrd |
|
12 |
9
|
fveq2d |
|
13 |
12
|
fveq1d |
|
14 |
1 2 3 4
|
fseqenlem1 |
|
15 |
14
|
adantrr |
|
16 |
|
f1f |
|
17 |
15 16
|
syl |
|
18 |
|
simprr |
|
19 |
17 18
|
ffvelrnd |
|
20 |
13 19
|
eqeltrd |
|
21 |
11 20
|
opelxpd |
|
22 |
21
|
rexlimdvaa |
|
23 |
6 22
|
syl5bi |
|
24 |
23
|
imp |
|
25 |
24 5
|
fmptd |
|
26 |
|
ffun |
|
27 |
|
funbrfv2b |
|
28 |
25 26 27
|
3syl |
|
29 |
28
|
simplbda |
|
30 |
28
|
simprbda |
|
31 |
25
|
fdmd |
|
32 |
31
|
adantr |
|
33 |
30 32
|
eleqtrd |
|
34 |
|
dmeq |
|
35 |
34
|
fveq2d |
|
36 |
|
id |
|
37 |
35 36
|
fveq12d |
|
38 |
34 37
|
opeq12d |
|
39 |
|
opex |
|
40 |
38 5 39
|
fvmpt |
|
41 |
33 40
|
syl |
|
42 |
29 41
|
eqtr3d |
|
43 |
42
|
fveq2d |
|
44 |
|
vex |
|
45 |
44
|
dmex |
|
46 |
|
fvex |
|
47 |
45 46
|
op1st |
|
48 |
43 47
|
eqtrdi |
|
49 |
48
|
fveq2d |
|
50 |
49
|
cnveqd |
|
51 |
42
|
fveq2d |
|
52 |
45 46
|
op2nd |
|
53 |
51 52
|
eqtrdi |
|
54 |
50 53
|
fveq12d |
|
55 |
|
eliun |
|
56 |
|
elmapi |
|
57 |
56
|
adantl |
|
58 |
57
|
fdmd |
|
59 |
|
simpl |
|
60 |
58 59
|
eqeltrd |
|
61 |
|
simpr |
|
62 |
58
|
oveq2d |
|
63 |
61 62
|
eleqtrrd |
|
64 |
60 63
|
jca |
|
65 |
64
|
rexlimiva |
|
66 |
55 65
|
sylbi |
|
67 |
33 66
|
syl |
|
68 |
67
|
simpld |
|
69 |
1 2 3 4
|
fseqenlem1 |
|
70 |
68 69
|
syldan |
|
71 |
|
f1f1orn |
|
72 |
70 71
|
syl |
|
73 |
67
|
simprd |
|
74 |
|
f1ocnvfv1 |
|
75 |
72 73 74
|
syl2anc |
|
76 |
54 75
|
eqtr2d |
|
77 |
76
|
ex |
|
78 |
77
|
alrimiv |
|
79 |
|
mo2icl |
|
80 |
78 79
|
syl |
|
81 |
80
|
alrimiv |
|
82 |
|
dff12 |
|
83 |
25 81 82
|
sylanbrc |
|