Metamath Proof Explorer


Theorem fsetdmprc0

Description: The set of functions with a proper class as domain is empty. (Contributed by AV, 22-Aug-2024)

Ref Expression
Assertion fsetdmprc0 AVf|fFnA=

Proof

Step Hyp Ref Expression
1 df-nel AV¬AV
2 vex gV
3 2 a1i gFnAgV
4 id gFnAgFnA
5 3 4 fndmexd gFnAAV
6 5 con3i ¬AV¬gFnA
7 1 6 sylbi AV¬gFnA
8 7 alrimiv AVg¬gFnA
9 fneq1 f=gfFnAgFnA
10 9 ab0w f|fFnA=g¬gFnA
11 8 10 sylibr AVf|fFnA=