Metamath Proof Explorer


Theorem fsetfocdm

Description: The class of functions with a given domain that is a set and a given codomain is mapped, through evaluation at a point of the domain, onto the codomain. (Contributed by AV, 15-Sep-2024)

Ref Expression
Hypotheses fsetfocdm.f F = f | f : A B
fsetfocdm.s S = g F g X
Assertion fsetfocdm A V X A S : F onto B

Proof

Step Hyp Ref Expression
1 fsetfocdm.f F = f | f : A B
2 fsetfocdm.s S = g F g X
3 1 2 fsetfcdm X A S : F B
4 3 adantl A V X A S : F B
5 simplr A V X A g B x A g B
6 5 fmpttd A V X A g B x A g : A B
7 simpll A V X A g B A V
8 7 mptexd A V X A g B x A g V
9 feq1 f = x A g f : A B x A g : A B
10 9 1 elab2g x A g V x A g F x A g : A B
11 8 10 syl A V X A g B x A g F x A g : A B
12 6 11 mpbird A V X A g B x A g F
13 fveq1 g = f g X = f X
14 13 cbvmptv g F g X = f F f X
15 2 14 eqtri S = f F f X
16 fveq1 f = x A g f X = x A g X
17 fvexd A V X A g B x A g X V
18 15 16 12 17 fvmptd3 A V X A g B S x A g = x A g X
19 eqidd x = X g = g
20 eqid x A g = x A g
21 vex g V
22 19 20 21 fvmpt X A x A g X = g
23 22 ad2antlr A V X A g B x A g X = g
24 18 23 eqtrd A V X A g B S x A g = g
25 fveq2 h = x A g S h = S x A g
26 25 eqcomd h = x A g S x A g = S h
27 24 26 sylan9req A V X A g B h = x A g g = S h
28 12 27 rspcedeq2vd A V X A g B h F g = S h
29 28 ralrimiva A V X A g B h F g = S h
30 dffo3 S : F onto B S : F B g B h F g = S h
31 4 29 30 sylanbrc A V X A S : F onto B