Step |
Hyp |
Ref |
Expression |
1 |
|
nn0gsumfz.b |
|
2 |
|
nn0gsumfz.0 |
|
3 |
|
nn0gsumfz.g |
|
4 |
|
nn0gsumfz.f |
|
5 |
|
fsfnn0gsumfsffz.s |
|
6 |
|
fsfnn0gsumfsffz.h |
|
7 |
6
|
oveq2i |
|
8 |
3
|
adantr |
|
9 |
|
nn0ex |
|
10 |
9
|
a1i |
|
11 |
|
elmapi |
|
12 |
4 11
|
syl |
|
13 |
12
|
adantr |
|
14 |
2
|
fvexi |
|
15 |
14
|
a1i |
|
16 |
4
|
adantr |
|
17 |
5
|
adantr |
|
18 |
|
simpr |
|
19 |
15 16 17 18
|
suppssfz |
|
20 |
|
elmapfun |
|
21 |
4 20
|
syl |
|
22 |
14
|
a1i |
|
23 |
4 21 22
|
3jca |
|
24 |
|
fzfid |
|
25 |
24
|
anim1i |
|
26 |
|
suppssfifsupp |
|
27 |
23 25 26
|
syl2an2r |
|
28 |
19 27
|
syldan |
|
29 |
1 2 8 10 13 19 28
|
gsumres |
|
30 |
7 29
|
eqtr2id |
|
31 |
30
|
ex |
|