Metamath Proof Explorer


Theorem fsfnn0gsumfsffz

Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019)

Ref Expression
Hypotheses nn0gsumfz.b B = Base G
nn0gsumfz.0 0 ˙ = 0 G
nn0gsumfz.g φ G CMnd
nn0gsumfz.f φ F B 0
fsfnn0gsumfsffz.s φ S 0
fsfnn0gsumfsffz.h H = F 0 S
Assertion fsfnn0gsumfsffz φ x 0 S < x F x = 0 ˙ G F = G H

Proof

Step Hyp Ref Expression
1 nn0gsumfz.b B = Base G
2 nn0gsumfz.0 0 ˙ = 0 G
3 nn0gsumfz.g φ G CMnd
4 nn0gsumfz.f φ F B 0
5 fsfnn0gsumfsffz.s φ S 0
6 fsfnn0gsumfsffz.h H = F 0 S
7 6 oveq2i G H = G F 0 S
8 3 adantr φ x 0 S < x F x = 0 ˙ G CMnd
9 nn0ex 0 V
10 9 a1i φ x 0 S < x F x = 0 ˙ 0 V
11 elmapi F B 0 F : 0 B
12 4 11 syl φ F : 0 B
13 12 adantr φ x 0 S < x F x = 0 ˙ F : 0 B
14 2 fvexi 0 ˙ V
15 14 a1i φ x 0 S < x F x = 0 ˙ 0 ˙ V
16 4 adantr φ x 0 S < x F x = 0 ˙ F B 0
17 5 adantr φ x 0 S < x F x = 0 ˙ S 0
18 simpr φ x 0 S < x F x = 0 ˙ x 0 S < x F x = 0 ˙
19 15 16 17 18 suppssfz φ x 0 S < x F x = 0 ˙ F supp 0 ˙ 0 S
20 elmapfun F B 0 Fun F
21 4 20 syl φ Fun F
22 14 a1i φ 0 ˙ V
23 4 21 22 3jca φ F B 0 Fun F 0 ˙ V
24 fzfid φ 0 S Fin
25 24 anim1i φ F supp 0 ˙ 0 S 0 S Fin F supp 0 ˙ 0 S
26 suppssfifsupp F B 0 Fun F 0 ˙ V 0 S Fin F supp 0 ˙ 0 S finSupp 0 ˙ F
27 23 25 26 syl2an2r φ F supp 0 ˙ 0 S finSupp 0 ˙ F
28 19 27 syldan φ x 0 S < x F x = 0 ˙ finSupp 0 ˙ F
29 1 2 8 10 13 19 28 gsumres φ x 0 S < x F x = 0 ˙ G F 0 S = G F
30 7 29 eqtr2id φ x 0 S < x F x = 0 ˙ G F = G H
31 30 ex φ x 0 S < x F x = 0 ˙ G F = G H