Metamath Proof Explorer


Theorem fsnd

Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021)

Ref Expression
Hypotheses fsnd.a φ A V
fsnd.b φ B W
Assertion fsnd φ A B : A W

Proof

Step Hyp Ref Expression
1 fsnd.a φ A V
2 fsnd.b φ B W
3 1 2 jca φ A V B W
4 f1sng A V B W A B : A 1-1 W
5 f1f A B : A 1-1 W A B : A W
6 3 4 5 3syl φ A B : A W