Step |
Hyp |
Ref |
Expression |
1 |
|
fsneq.a |
|
2 |
|
fsneq.b |
|
3 |
|
fsneq.f |
|
4 |
|
fsneq.g |
|
5 |
|
eqfnfv |
|
6 |
3 4 5
|
syl2anc |
|
7 |
|
snidg |
|
8 |
1 7
|
syl |
|
9 |
2
|
eqcomi |
|
10 |
9
|
a1i |
|
11 |
8 10
|
eleqtrd |
|
12 |
11
|
adantr |
|
13 |
|
simpr |
|
14 |
|
fveq2 |
|
15 |
|
fveq2 |
|
16 |
14 15
|
eqeq12d |
|
17 |
16
|
rspcva |
|
18 |
12 13 17
|
syl2anc |
|
19 |
18
|
ex |
|
20 |
|
simpl |
|
21 |
2
|
eleq2i |
|
22 |
21
|
biimpi |
|
23 |
|
velsn |
|
24 |
22 23
|
sylib |
|
25 |
24
|
fveq2d |
|
26 |
25
|
adantl |
|
27 |
24
|
fveq2d |
|
28 |
27
|
adantl |
|
29 |
20 26 28
|
3eqtr4d |
|
30 |
29
|
adantll |
|
31 |
30
|
ralrimiva |
|
32 |
31
|
ex |
|
33 |
19 32
|
impbid |
|
34 |
6 33
|
bitrd |
|