| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsnex.1 |  | 
						
							| 2 |  | fsn2g |  | 
						
							| 3 | 2 | simprbda |  | 
						
							| 4 | 3 | adantrr |  | 
						
							| 5 | 1 | adantl |  | 
						
							| 6 |  | simprr |  | 
						
							| 7 | 4 5 6 | rspcedvd |  | 
						
							| 8 | 7 | ex |  | 
						
							| 9 | 8 | exlimdv |  | 
						
							| 10 | 9 | imp |  | 
						
							| 11 |  | nfv |  | 
						
							| 12 |  | nfre1 |  | 
						
							| 13 | 11 12 | nfan |  | 
						
							| 14 |  | f1osng |  | 
						
							| 15 | 14 | elvd |  | 
						
							| 16 | 15 | ad3antrrr |  | 
						
							| 17 |  | f1of |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 |  | simplr |  | 
						
							| 20 | 19 | snssd |  | 
						
							| 21 | 18 20 | fssd |  | 
						
							| 22 |  | fvsng |  | 
						
							| 23 | 22 | elvd |  | 
						
							| 24 | 23 | eqcomd |  | 
						
							| 25 | 24 | ad3antrrr |  | 
						
							| 26 |  | snex |  | 
						
							| 27 |  | feq1 |  | 
						
							| 28 |  | fveq1 |  | 
						
							| 29 | 28 | eqeq2d |  | 
						
							| 30 | 27 29 | anbi12d |  | 
						
							| 31 | 26 30 | spcev |  | 
						
							| 32 | 21 25 31 | syl2anc |  | 
						
							| 33 |  | simprl |  | 
						
							| 34 |  | simpllr |  | 
						
							| 35 |  | simplrr |  | 
						
							| 36 | 35 1 | syl |  | 
						
							| 37 | 34 36 | mpbid |  | 
						
							| 38 | 33 37 | mpdan |  | 
						
							| 39 | 33 38 | jca |  | 
						
							| 40 | 39 | ex |  | 
						
							| 41 | 40 | eximdv |  | 
						
							| 42 | 32 41 | mpd |  | 
						
							| 43 |  | simpr |  | 
						
							| 44 | 13 42 43 | r19.29af |  | 
						
							| 45 | 10 44 | impbida |  |