Metamath Proof Explorer


Theorem fsnex

Description: Relate a function with a singleton as domain and one variable. (Contributed by Thierry Arnoux, 12-Jul-2020)

Ref Expression
Hypothesis fsnex.1 x = f A ψ φ
Assertion fsnex A V f f : A D φ x D ψ

Proof

Step Hyp Ref Expression
1 fsnex.1 x = f A ψ φ
2 fsn2g A V f : A D f A D f = A f A
3 2 simprbda A V f : A D f A D
4 3 adantrr A V f : A D φ f A D
5 1 adantl A V f : A D φ x = f A ψ φ
6 simprr A V f : A D φ φ
7 4 5 6 rspcedvd A V f : A D φ x D ψ
8 7 ex A V f : A D φ x D ψ
9 8 exlimdv A V f f : A D φ x D ψ
10 9 imp A V f f : A D φ x D ψ
11 nfv x A V
12 nfre1 x x D ψ
13 11 12 nfan x A V x D ψ
14 f1osng A V x V A x : A 1-1 onto x
15 14 elvd A V A x : A 1-1 onto x
16 15 ad3antrrr A V x D ψ x D ψ A x : A 1-1 onto x
17 f1of A x : A 1-1 onto x A x : A x
18 16 17 syl A V x D ψ x D ψ A x : A x
19 simplr A V x D ψ x D ψ x D
20 19 snssd A V x D ψ x D ψ x D
21 18 20 fssd A V x D ψ x D ψ A x : A D
22 fvsng A V x V A x A = x
23 22 elvd A V A x A = x
24 23 eqcomd A V x = A x A
25 24 ad3antrrr A V x D ψ x D ψ x = A x A
26 snex A x V
27 feq1 f = A x f : A D A x : A D
28 fveq1 f = A x f A = A x A
29 28 eqeq2d f = A x x = f A x = A x A
30 27 29 anbi12d f = A x f : A D x = f A A x : A D x = A x A
31 26 30 spcev A x : A D x = A x A f f : A D x = f A
32 21 25 31 syl2anc A V x D ψ x D ψ f f : A D x = f A
33 simprl A V x D ψ x D ψ f : A D x = f A f : A D
34 simpllr A V x D ψ x D ψ f : A D x = f A f : A D ψ
35 simplrr A V x D ψ x D ψ f : A D x = f A f : A D x = f A
36 35 1 syl A V x D ψ x D ψ f : A D x = f A f : A D ψ φ
37 34 36 mpbid A V x D ψ x D ψ f : A D x = f A f : A D φ
38 33 37 mpdan A V x D ψ x D ψ f : A D x = f A φ
39 33 38 jca A V x D ψ x D ψ f : A D x = f A f : A D φ
40 39 ex A V x D ψ x D ψ f : A D x = f A f : A D φ
41 40 eximdv A V x D ψ x D ψ f f : A D x = f A f f : A D φ
42 32 41 mpd A V x D ψ x D ψ f f : A D φ
43 simpr A V x D ψ x D ψ
44 13 42 43 r19.29af A V x D ψ f f : A D φ
45 10 44 impbida A V f f : A D φ x D ψ