Metamath Proof Explorer


Theorem fsng

Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012)

Ref Expression
Assertion fsng A C B D F : A B F = A B

Proof

Step Hyp Ref Expression
1 sneq a = A a = A
2 1 feq2d a = A F : a b F : A b
3 opeq1 a = A a b = A b
4 3 sneqd a = A a b = A b
5 4 eqeq2d a = A F = a b F = A b
6 2 5 bibi12d a = A F : a b F = a b F : A b F = A b
7 sneq b = B b = B
8 7 feq3d b = B F : A b F : A B
9 opeq2 b = B A b = A B
10 9 sneqd b = B A b = A B
11 10 eqeq2d b = B F = A b F = A B
12 8 11 bibi12d b = B F : A b F = A b F : A B F = A B
13 vex a V
14 vex b V
15 13 14 fsn F : a b F = a b
16 6 12 15 vtocl2g A C B D F : A B F = A B