Metamath Proof Explorer


Theorem fsnunres

Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015)

Ref Expression
Assertion fsnunres F Fn S ¬ X S F X Y S = F

Proof

Step Hyp Ref Expression
1 fnresdm F Fn S F S = F
2 1 adantr F Fn S ¬ X S F S = F
3 ressnop0 ¬ X S X Y S =
4 3 adantl F Fn S ¬ X S X Y S =
5 2 4 uneq12d F Fn S ¬ X S F S X Y S = F
6 resundir F X Y S = F S X Y S
7 un0 F = F
8 7 eqcomi F = F
9 5 6 8 3eqtr4g F Fn S ¬ X S F X Y S = F