Metamath Proof Explorer


Theorem fsplit

Description: A function that can be used to feed a common value to both operands of an operation. Use as the second argument of a composition with the function of fpar in order to build compound functions such as ( x e. ( 0 [,) +oo ) |-> ( ( sqrtx ) + ( sinx ) ) ) . (Contributed by NM, 17-Sep-2007) Replace use of dfid2 with df-id . (Revised by BJ, 31-Dec-2023)

Ref Expression
Assertion fsplit 1 st I -1 = x V x x

Proof

Step Hyp Ref Expression
1 vex x V
2 vex y V
3 1 2 brcnv x 1 st I -1 y y 1 st I x
4 1 brresi y 1 st I x y I y 1 st x
5 19.42v z 1 st y = x y = z z 1 st y = x z y = z z
6 vex z V
7 6 6 op1std y = z z 1 st y = z
8 7 eqeq1d y = z z 1 st y = x z = x
9 8 pm5.32ri 1 st y = x y = z z z = x y = z z
10 9 exbii z 1 st y = x y = z z z z = x y = z z
11 fo1st 1 st : V onto V
12 fofn 1 st : V onto V 1 st Fn V
13 11 12 ax-mp 1 st Fn V
14 fnbrfvb 1 st Fn V y V 1 st y = x y 1 st x
15 13 2 14 mp2an 1 st y = x y 1 st x
16 df-id I = z t | z = t
17 16 eleq2i y I y z t | z = t
18 elopab y z t | z = t z t y = z t z = t
19 ancom y = z t z = t z = t y = z t
20 equcom z = t t = z
21 20 anbi1i z = t y = z t t = z y = z t
22 opeq2 t = z z t = z z
23 22 eqeq2d t = z y = z t y = z z
24 23 pm5.32i t = z y = z t t = z y = z z
25 19 21 24 3bitri y = z t z = t t = z y = z z
26 25 exbii t y = z t z = t t t = z y = z z
27 biidd t = z y = z z y = z z
28 27 equsexvw t t = z y = z z y = z z
29 26 28 bitri t y = z t z = t y = z z
30 29 exbii z t y = z t z = t z y = z z
31 17 18 30 3bitrri z y = z z y I
32 15 31 anbi12ci 1 st y = x z y = z z y I y 1 st x
33 5 10 32 3bitr3ri y I y 1 st x z z = x y = z z
34 id z = x z = x
35 34 34 opeq12d z = x z z = x x
36 35 eqeq2d z = x y = z z y = x x
37 36 equsexvw z z = x y = z z y = x x
38 33 37 bitri y I y 1 st x y = x x
39 3 4 38 3bitri x 1 st I -1 y y = x x
40 39 opabbii x y | x 1 st I -1 y = x y | y = x x
41 relcnv Rel 1 st I -1
42 dfrel4v Rel 1 st I -1 1 st I -1 = x y | x 1 st I -1 y
43 41 42 mpbi 1 st I -1 = x y | x 1 st I -1 y
44 mptv x V x x = x y | y = x x
45 40 43 44 3eqtr4i 1 st I -1 = x V x x