Metamath Proof Explorer


Theorem fsplitOLD

Description: Obsolete proof of fsplit as of 31-Dec-2023. (Contributed by NM, 17-Sep-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fsplitOLD 1 st I -1 = x V x x

Proof

Step Hyp Ref Expression
1 vex x V
2 vex y V
3 1 2 brcnv x 1 st I -1 y y 1 st I x
4 1 brresi y 1 st I x y I y 1 st x
5 19.42v z 1 st y = x y = z z 1 st y = x z y = z z
6 vex z V
7 6 6 op1std y = z z 1 st y = z
8 7 eqeq1d y = z z 1 st y = x z = x
9 8 pm5.32ri 1 st y = x y = z z z = x y = z z
10 9 exbii z 1 st y = x y = z z z z = x y = z z
11 fo1st 1 st : V onto V
12 fofn 1 st : V onto V 1 st Fn V
13 11 12 ax-mp 1 st Fn V
14 fnbrfvb 1 st Fn V y V 1 st y = x y 1 st x
15 13 2 14 mp2an 1 st y = x y 1 st x
16 dfid2 I = z z | z = z
17 16 eleq2i y I y z z | z = z
18 nfe1 z z y = z z z = z
19 18 19.9 z z y = z z z = z z y = z z z = z
20 elopab y z z | z = z z z y = z z z = z
21 equid z = z
22 21 biantru y = z z y = z z z = z
23 22 exbii z y = z z z y = z z z = z
24 19 20 23 3bitr4i y z z | z = z z y = z z
25 17 24 bitr2i z y = z z y I
26 15 25 anbi12ci 1 st y = x z y = z z y I y 1 st x
27 5 10 26 3bitr3ri y I y 1 st x z z = x y = z z
28 id z = x z = x
29 28 28 opeq12d z = x z z = x x
30 29 eqeq2d z = x y = z z y = x x
31 30 equsexvw z z = x y = z z y = x x
32 27 31 bitri y I y 1 st x y = x x
33 4 32 bitri y 1 st I x y = x x
34 3 33 bitri x 1 st I -1 y y = x x
35 34 opabbii x y | x 1 st I -1 y = x y | y = x x
36 relcnv Rel 1 st I -1
37 dfrel4v Rel 1 st I -1 1 st I -1 = x y | x 1 st I -1 y
38 36 37 mpbi 1 st I -1 = x y | x 1 st I -1 y
39 mptv x V x x = x y | y = x x
40 35 38 39 3eqtr4i 1 st I -1 = x V x x