Metamath Proof Explorer
Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
fssd.f |
|
|
|
fssd.b |
|
|
Assertion |
fssd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fssd.f |
|
| 2 |
|
fssd.b |
|
| 3 |
|
fss |
|
| 4 |
1 2 3
|
syl2anc |
|