Metamath Proof Explorer


Theorem fssres2

Description: Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005)

Ref Expression
Assertion fssres2 F A : A B C A F C : C B

Proof

Step Hyp Ref Expression
1 fssres F A : A B C A F A C : C B
2 resabs1 C A F A C = F C
3 2 feq1d C A F A C : C B F C : C B
4 3 adantl F A : A B C A F A C : C B F C : C B
5 1 4 mpbid F A : A B C A F C : C B