Metamath Proof Explorer


Theorem fssrescdmd

Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025)

Ref Expression
Hypotheses fssrescdmd.f φ F : A B
fssrescdmd.c φ C A
fssrescdmd.d φ F C D
Assertion fssrescdmd φ F C : C D

Proof

Step Hyp Ref Expression
1 fssrescdmd.f φ F : A B
2 fssrescdmd.c φ C A
3 fssrescdmd.d φ F C D
4 1 ffnd φ F Fn A
5 4 2 fnssresd φ F C Fn C
6 resima F C C = F C
7 6 3 eqsstrid φ F C C D
8 1 ffund φ Fun F
9 8 funresd φ Fun F C
10 1 fdmd φ dom F = A
11 2 10 sseqtrrd φ C dom F
12 ssdmres C dom F dom F C = C
13 12 a1i φ C dom F dom F C = C
14 eqcom dom F C = C C = dom F C
15 13 14 bitrdi φ C dom F C = dom F C
16 11 15 mpbid φ C = dom F C
17 16 eqimssd φ C dom F C
18 funimass4 Fun F C C dom F C F C C D x C F C x D
19 9 17 18 syl2anc φ F C C D x C F C x D
20 7 19 mpbid φ x C F C x D
21 ffnfv F C : C D F C Fn C x C F C x D
22 5 20 21 sylanbrc φ F C : C D