Metamath Proof Explorer


Theorem fssxp

Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion fssxp F : A B F A × B

Proof

Step Hyp Ref Expression
1 frel F : A B Rel F
2 relssdmrn Rel F F dom F × ran F
3 1 2 syl F : A B F dom F × ran F
4 fdm F : A B dom F = A
5 eqimss dom F = A dom F A
6 4 5 syl F : A B dom F A
7 frn F : A B ran F B
8 xpss12 dom F A ran F B dom F × ran F A × B
9 6 7 8 syl2anc F : A B dom F × ran F A × B
10 3 9 sstrd F : A B F A × B