Step |
Hyp |
Ref |
Expression |
1 |
|
fbasne0 |
|
2 |
|
fvprc |
|
3 |
2
|
necon1ai |
|
4 |
1 3
|
syl |
|
5 |
|
ssfii |
|
6 |
4 5
|
syl |
|
7 |
|
fbsspw |
|
8 |
6 7
|
sstrd |
|
9 |
|
fieq0 |
|
10 |
9
|
necon3bid |
|
11 |
10
|
biimpar |
|
12 |
4 1 11
|
syl2anc |
|
13 |
|
0nelfb |
|
14 |
8 12 13
|
3jca |
|
15 |
|
simpr1 |
|
16 |
|
fipwss |
|
17 |
15 16
|
syl |
|
18 |
|
pwexg |
|
19 |
18
|
adantr |
|
20 |
19 15
|
ssexd |
|
21 |
|
simpr2 |
|
22 |
10
|
biimpa |
|
23 |
20 21 22
|
syl2anc |
|
24 |
|
simpr3 |
|
25 |
|
df-nel |
|
26 |
24 25
|
sylibr |
|
27 |
|
fiin |
|
28 |
|
ssid |
|
29 |
|
sseq1 |
|
30 |
29
|
rspcev |
|
31 |
27 28 30
|
sylancl |
|
32 |
31
|
rgen2 |
|
33 |
32
|
a1i |
|
34 |
23 26 33
|
3jca |
|
35 |
|
isfbas2 |
|
36 |
35
|
adantr |
|
37 |
17 34 36
|
mpbir2and |
|
38 |
37
|
ex |
|
39 |
14 38
|
impbid2 |
|