Metamath Proof Explorer


Theorem fsubbas

Description: A condition for a set to generate a filter base. (Contributed by Jeff Hankins, 2-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fsubbas X V fi A fBas X A 𝒫 X A ¬ fi A

Proof

Step Hyp Ref Expression
1 fbasne0 fi A fBas X fi A
2 fvprc ¬ A V fi A =
3 2 necon1ai fi A A V
4 1 3 syl fi A fBas X A V
5 ssfii A V A fi A
6 4 5 syl fi A fBas X A fi A
7 fbsspw fi A fBas X fi A 𝒫 X
8 6 7 sstrd fi A fBas X A 𝒫 X
9 fieq0 A V A = fi A =
10 9 necon3bid A V A fi A
11 10 biimpar A V fi A A
12 4 1 11 syl2anc fi A fBas X A
13 0nelfb fi A fBas X ¬ fi A
14 8 12 13 3jca fi A fBas X A 𝒫 X A ¬ fi A
15 simpr1 X V A 𝒫 X A ¬ fi A A 𝒫 X
16 fipwss A 𝒫 X fi A 𝒫 X
17 15 16 syl X V A 𝒫 X A ¬ fi A fi A 𝒫 X
18 pwexg X V 𝒫 X V
19 18 adantr X V A 𝒫 X A ¬ fi A 𝒫 X V
20 19 15 ssexd X V A 𝒫 X A ¬ fi A A V
21 simpr2 X V A 𝒫 X A ¬ fi A A
22 10 biimpa A V A fi A
23 20 21 22 syl2anc X V A 𝒫 X A ¬ fi A fi A
24 simpr3 X V A 𝒫 X A ¬ fi A ¬ fi A
25 df-nel fi A ¬ fi A
26 24 25 sylibr X V A 𝒫 X A ¬ fi A fi A
27 fiin x fi A y fi A x y fi A
28 ssid x y x y
29 sseq1 z = x y z x y x y x y
30 29 rspcev x y fi A x y x y z fi A z x y
31 27 28 30 sylancl x fi A y fi A z fi A z x y
32 31 rgen2 x fi A y fi A z fi A z x y
33 32 a1i X V A 𝒫 X A ¬ fi A x fi A y fi A z fi A z x y
34 23 26 33 3jca X V A 𝒫 X A ¬ fi A fi A fi A x fi A y fi A z fi A z x y
35 isfbas2 X V fi A fBas X fi A 𝒫 X fi A fi A x fi A y fi A z fi A z x y
36 35 adantr X V A 𝒫 X A ¬ fi A fi A fBas X fi A 𝒫 X fi A fi A x fi A y fi A z fi A z x y
37 17 34 36 mpbir2and X V A 𝒫 X A ¬ fi A fi A fBas X
38 37 ex X V A 𝒫 X A ¬ fi A fi A fBas X
39 14 38 impbid2 X V fi A fBas X A 𝒫 X A ¬ fi A