| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fbasne0 |  | 
						
							| 2 |  | fvprc |  | 
						
							| 3 | 2 | necon1ai |  | 
						
							| 4 | 1 3 | syl |  | 
						
							| 5 |  | ssfii |  | 
						
							| 6 | 4 5 | syl |  | 
						
							| 7 |  | fbsspw |  | 
						
							| 8 | 6 7 | sstrd |  | 
						
							| 9 |  | fieq0 |  | 
						
							| 10 | 9 | necon3bid |  | 
						
							| 11 | 10 | biimpar |  | 
						
							| 12 | 4 1 11 | syl2anc |  | 
						
							| 13 |  | 0nelfb |  | 
						
							| 14 | 8 12 13 | 3jca |  | 
						
							| 15 |  | simpr1 |  | 
						
							| 16 |  | fipwss |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 |  | pwexg |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 19 15 | ssexd |  | 
						
							| 21 |  | simpr2 |  | 
						
							| 22 | 10 | biimpa |  | 
						
							| 23 | 20 21 22 | syl2anc |  | 
						
							| 24 |  | simpr3 |  | 
						
							| 25 |  | df-nel |  | 
						
							| 26 | 24 25 | sylibr |  | 
						
							| 27 |  | fiin |  | 
						
							| 28 |  | ssid |  | 
						
							| 29 |  | sseq1 |  | 
						
							| 30 | 29 | rspcev |  | 
						
							| 31 | 27 28 30 | sylancl |  | 
						
							| 32 | 31 | rgen2 |  | 
						
							| 33 | 32 | a1i |  | 
						
							| 34 | 23 26 33 | 3jca |  | 
						
							| 35 |  | isfbas2 |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 17 34 36 | mpbir2and |  | 
						
							| 38 | 37 | ex |  | 
						
							| 39 | 14 38 | impbid2 |  |