Step |
Hyp |
Ref |
Expression |
1 |
|
fsum.1 |
|
2 |
|
fsum.2 |
|
3 |
|
fsum.3 |
|
4 |
|
fsum.4 |
|
5 |
|
fsum.5 |
|
6 |
|
df-sum |
|
7 |
|
fvex |
|
8 |
|
eleq1w |
|
9 |
|
csbeq1 |
|
10 |
8 9
|
ifbieq1d |
|
11 |
10
|
cbvmptv |
|
12 |
4
|
ralrimiva |
|
13 |
|
nfcsb1v |
|
14 |
13
|
nfel1 |
|
15 |
|
csbeq1a |
|
16 |
15
|
eleq1d |
|
17 |
14 16
|
rspc |
|
18 |
12 17
|
mpan9 |
|
19 |
|
fveq2 |
|
20 |
19
|
csbeq1d |
|
21 |
|
csbcow |
|
22 |
20 21
|
eqtr4di |
|
23 |
22
|
cbvmptv |
|
24 |
11 18 23
|
summo |
|
25 |
|
f1of |
|
26 |
3 25
|
syl |
|
27 |
|
ovex |
|
28 |
|
fex |
|
29 |
26 27 28
|
sylancl |
|
30 |
|
nnuz |
|
31 |
2 30
|
eleqtrdi |
|
32 |
|
elfznn |
|
33 |
|
fvex |
|
34 |
5 33
|
eqeltrrdi |
|
35 |
|
eqid |
|
36 |
35
|
fvmpt2 |
|
37 |
32 34 36
|
syl2an2 |
|
38 |
5 37
|
eqtr4d |
|
39 |
38
|
ralrimiva |
|
40 |
|
nffvmpt1 |
|
41 |
40
|
nfeq2 |
|
42 |
|
fveq2 |
|
43 |
|
fveq2 |
|
44 |
42 43
|
eqeq12d |
|
45 |
41 44
|
rspc |
|
46 |
39 45
|
mpan9 |
|
47 |
31 46
|
seqfveq |
|
48 |
3 47
|
jca |
|
49 |
|
f1oeq1 |
|
50 |
|
fveq1 |
|
51 |
50
|
csbeq1d |
|
52 |
|
fvex |
|
53 |
52 1
|
csbie |
|
54 |
51 53
|
eqtrdi |
|
55 |
54
|
mpteq2dv |
|
56 |
55
|
seqeq3d |
|
57 |
56
|
fveq1d |
|
58 |
57
|
eqeq2d |
|
59 |
49 58
|
anbi12d |
|
60 |
29 48 59
|
spcedv |
|
61 |
|
oveq2 |
|
62 |
61
|
f1oeq2d |
|
63 |
|
fveq2 |
|
64 |
63
|
eqeq2d |
|
65 |
62 64
|
anbi12d |
|
66 |
65
|
exbidv |
|
67 |
66
|
rspcev |
|
68 |
2 60 67
|
syl2anc |
|
69 |
68
|
olcd |
|
70 |
|
breq2 |
|
71 |
70
|
anbi2d |
|
72 |
71
|
rexbidv |
|
73 |
|
eqeq1 |
|
74 |
73
|
anbi2d |
|
75 |
74
|
exbidv |
|
76 |
75
|
rexbidv |
|
77 |
72 76
|
orbi12d |
|
78 |
77
|
moi2 |
|
79 |
7 78
|
mpanl1 |
|
80 |
79
|
ancom2s |
|
81 |
80
|
expr |
|
82 |
24 69 81
|
syl2anc |
|
83 |
69 77
|
syl5ibrcom |
|
84 |
82 83
|
impbid |
|
85 |
84
|
adantr |
|
86 |
85
|
iota5 |
|
87 |
7 86
|
mpan2 |
|
88 |
6 87
|
eqtrid |
|