Step |
Hyp |
Ref |
Expression |
1 |
|
fsumge0.1 |
|
2 |
|
fsumge0.2 |
|
3 |
|
fsumge0.3 |
|
4 |
1
|
adantr |
|
5 |
2
|
adantlr |
|
6 |
3
|
adantlr |
|
7 |
|
snssi |
|
8 |
7
|
adantl |
|
9 |
4 5 6 8
|
fsumless |
|
10 |
9
|
adantlr |
|
11 |
|
simpr |
|
12 |
2 3
|
jca |
|
13 |
12
|
ralrimiva |
|
14 |
13
|
adantr |
|
15 |
|
nfcsb1v |
|
16 |
15
|
nfel1 |
|
17 |
|
nfcv |
|
18 |
|
nfcv |
|
19 |
17 18 15
|
nfbr |
|
20 |
16 19
|
nfan |
|
21 |
|
csbeq1a |
|
22 |
21
|
eleq1d |
|
23 |
21
|
breq2d |
|
24 |
22 23
|
anbi12d |
|
25 |
20 24
|
rspc |
|
26 |
14 25
|
mpan9 |
|
27 |
26
|
simpld |
|
28 |
27
|
recnd |
|
29 |
|
sumsns |
|
30 |
11 28 29
|
syl2anc |
|
31 |
|
simplr |
|
32 |
10 30 31
|
3brtr3d |
|
33 |
26
|
simprd |
|
34 |
|
0re |
|
35 |
|
letri3 |
|
36 |
27 34 35
|
sylancl |
|
37 |
32 33 36
|
mpbir2and |
|
38 |
37
|
ralrimiva |
|
39 |
|
nfv |
|
40 |
15
|
nfeq1 |
|
41 |
21
|
eqeq1d |
|
42 |
39 40 41
|
cbvralw |
|
43 |
38 42
|
sylibr |
|
44 |
43
|
ex |
|
45 |
|
sumz |
|
46 |
45
|
olcs |
|
47 |
|
sumeq2 |
|
48 |
47
|
eqeq1d |
|
49 |
46 48
|
syl5ibrcom |
|
50 |
1 49
|
syl |
|
51 |
44 50
|
impbid |
|