| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumge0.1 |
|
| 2 |
|
fsumge0.2 |
|
| 3 |
|
fsumge0.3 |
|
| 4 |
1
|
adantr |
|
| 5 |
2
|
adantlr |
|
| 6 |
3
|
adantlr |
|
| 7 |
|
snssi |
|
| 8 |
7
|
adantl |
|
| 9 |
4 5 6 8
|
fsumless |
|
| 10 |
9
|
adantlr |
|
| 11 |
|
simpr |
|
| 12 |
2 3
|
jca |
|
| 13 |
12
|
ralrimiva |
|
| 14 |
13
|
adantr |
|
| 15 |
|
nfcsb1v |
|
| 16 |
15
|
nfel1 |
|
| 17 |
|
nfcv |
|
| 18 |
|
nfcv |
|
| 19 |
17 18 15
|
nfbr |
|
| 20 |
16 19
|
nfan |
|
| 21 |
|
csbeq1a |
|
| 22 |
21
|
eleq1d |
|
| 23 |
21
|
breq2d |
|
| 24 |
22 23
|
anbi12d |
|
| 25 |
20 24
|
rspc |
|
| 26 |
14 25
|
mpan9 |
|
| 27 |
26
|
simpld |
|
| 28 |
27
|
recnd |
|
| 29 |
|
sumsns |
|
| 30 |
11 28 29
|
syl2anc |
|
| 31 |
|
simplr |
|
| 32 |
10 30 31
|
3brtr3d |
|
| 33 |
26
|
simprd |
|
| 34 |
|
0re |
|
| 35 |
|
letri3 |
|
| 36 |
27 34 35
|
sylancl |
|
| 37 |
32 33 36
|
mpbir2and |
|
| 38 |
37
|
ralrimiva |
|
| 39 |
|
nfv |
|
| 40 |
15
|
nfeq1 |
|
| 41 |
21
|
eqeq1d |
|
| 42 |
39 40 41
|
cbvralw |
|
| 43 |
38 42
|
sylibr |
|
| 44 |
43
|
ex |
|
| 45 |
|
sumz |
|
| 46 |
45
|
olcs |
|
| 47 |
|
sumeq2 |
|
| 48 |
47
|
eqeq1d |
|
| 49 |
46 48
|
syl5ibrcom |
|
| 50 |
1 49
|
syl |
|
| 51 |
44 50
|
impbid |
|