Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite sums
fsum0diag
Metamath Proof Explorer
Description: Two ways to express "the sum of A ( j , k ) over the triangular
region M <_ j , M <_ k , j + k <_ N ". (Contributed by NM , 31-Dec-2005) (Proof shortened by Mario Carneiro , 28-Apr-2014)
(Revised by Mario Carneiro , 8-Apr-2016)
Ref
Expression
Hypothesis
fsum0diag.1
⊢ φ ∧ j ∈ 0 … N ∧ k ∈ 0 … N − j → A ∈ ℂ
Assertion
fsum0diag
⊢ φ → ∑ j = 0 N ∑ k = 0 N − j A = ∑ k = 0 N ∑ j = 0 N − k A
Proof
Step
Hyp
Ref
Expression
1
fsum0diag.1
⊢ φ ∧ j ∈ 0 … N ∧ k ∈ 0 … N − j → A ∈ ℂ
2
fzfid
⊢ φ → 0 … N ∈ Fin
3
fzfid
⊢ φ ∧ j ∈ 0 … N → 0 … N − j ∈ Fin
4
fsum0diaglem
⊢ j ∈ 0 … N ∧ k ∈ 0 … N − j → k ∈ 0 … N ∧ j ∈ 0 … N − k
5
fsum0diaglem
⊢ k ∈ 0 … N ∧ j ∈ 0 … N − k → j ∈ 0 … N ∧ k ∈ 0 … N − j
6
4 5
impbii
⊢ j ∈ 0 … N ∧ k ∈ 0 … N − j ↔ k ∈ 0 … N ∧ j ∈ 0 … N − k
7
6
a1i
⊢ φ → j ∈ 0 … N ∧ k ∈ 0 … N − j ↔ k ∈ 0 … N ∧ j ∈ 0 … N − k
8
2 2 3 7 1
fsumcom2
⊢ φ → ∑ j = 0 N ∑ k = 0 N − j A = ∑ k = 0 N ∑ j = 0 N − k A