| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsum0diag2.1 |
|
| 2 |
|
fsum0diag2.2 |
|
| 3 |
|
fsum0diag2.3 |
|
| 4 |
|
fznn0sub2 |
|
| 5 |
4
|
ad2antll |
|
| 6 |
3
|
expr |
|
| 7 |
6
|
ralrimiv |
|
| 8 |
1
|
eleq1d |
|
| 9 |
8
|
cbvralvw |
|
| 10 |
7 9
|
sylibr |
|
| 11 |
10
|
adantrr |
|
| 12 |
|
nfcsb1v |
|
| 13 |
12
|
nfel1 |
|
| 14 |
|
csbeq1a |
|
| 15 |
14
|
eleq1d |
|
| 16 |
13 15
|
rspc |
|
| 17 |
5 11 16
|
sylc |
|
| 18 |
17
|
fsum0diag |
|
| 19 |
|
nfcsb1v |
|
| 20 |
19
|
nfel1 |
|
| 21 |
|
csbeq1a |
|
| 22 |
21
|
eleq1d |
|
| 23 |
20 22
|
rspc |
|
| 24 |
10 23
|
mpan9 |
|
| 25 |
|
csbeq1 |
|
| 26 |
24 25
|
fsumrev2 |
|
| 27 |
|
elfz3nn0 |
|
| 28 |
27
|
ad2antlr |
|
| 29 |
|
elfzelz |
|
| 30 |
29
|
ad2antlr |
|
| 31 |
|
nn0cn |
|
| 32 |
|
zcn |
|
| 33 |
|
subcl |
|
| 34 |
31 32 33
|
syl2an |
|
| 35 |
28 30 34
|
syl2anc |
|
| 36 |
|
addlid |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
oveq1d |
|
| 39 |
38
|
csbeq1d |
|
| 40 |
39
|
sumeq2dv |
|
| 41 |
26 40
|
eqtrd |
|
| 42 |
41
|
sumeq2dv |
|
| 43 |
|
elfz3nn0 |
|
| 44 |
43
|
adantl |
|
| 45 |
|
addlid |
|
| 46 |
44 31 45
|
3syl |
|
| 47 |
46
|
oveq1d |
|
| 48 |
47
|
oveq2d |
|
| 49 |
47
|
oveq1d |
|
| 50 |
49
|
adantr |
|
| 51 |
43
|
ad2antlr |
|
| 52 |
|
elfzelz |
|
| 53 |
52
|
ad2antlr |
|
| 54 |
|
elfzelz |
|
| 55 |
54
|
adantl |
|
| 56 |
|
zcn |
|
| 57 |
|
sub32 |
|
| 58 |
31 56 32 57
|
syl3an |
|
| 59 |
51 53 55 58
|
syl3anc |
|
| 60 |
50 59
|
eqtrd |
|
| 61 |
60
|
csbeq1d |
|
| 62 |
48 61
|
sumeq12rdv |
|
| 63 |
62
|
sumeq2dv |
|
| 64 |
18 42 63
|
3eqtr4d |
|
| 65 |
|
fzfid |
|
| 66 |
|
elfzuz3 |
|
| 67 |
66
|
adantl |
|
| 68 |
|
elfzuz3 |
|
| 69 |
68
|
adantl |
|
| 70 |
69
|
adantr |
|
| 71 |
|
elfzuzb |
|
| 72 |
67 70 71
|
sylanbrc |
|
| 73 |
|
elfzelz |
|
| 74 |
73
|
adantl |
|
| 75 |
|
elfzel2 |
|
| 76 |
75
|
ad2antlr |
|
| 77 |
|
elfzelz |
|
| 78 |
77
|
ad2antlr |
|
| 79 |
|
fzsubel |
|
| 80 |
74 76 78 74 79
|
syl22anc |
|
| 81 |
72 80
|
mpbid |
|
| 82 |
|
subid |
|
| 83 |
74 32 82
|
3syl |
|
| 84 |
83
|
oveq1d |
|
| 85 |
81 84
|
eleqtrd |
|
| 86 |
|
simpll |
|
| 87 |
|
fzss2 |
|
| 88 |
69 87
|
syl |
|
| 89 |
88
|
sselda |
|
| 90 |
86 89 10
|
syl2anc |
|
| 91 |
|
nfcsb1v |
|
| 92 |
91
|
nfel1 |
|
| 93 |
|
csbeq1a |
|
| 94 |
93
|
eleq1d |
|
| 95 |
92 94
|
rspc |
|
| 96 |
85 90 95
|
sylc |
|
| 97 |
65 96
|
fsumcl |
|
| 98 |
|
oveq2 |
|
| 99 |
|
oveq1 |
|
| 100 |
99
|
csbeq1d |
|
| 101 |
100
|
adantr |
|
| 102 |
98 101
|
sumeq12dv |
|
| 103 |
97 102
|
fsumrev2 |
|
| 104 |
64 103
|
eqtr4d |
|
| 105 |
|
vex |
|
| 106 |
105 1
|
csbie |
|
| 107 |
106
|
a1i |
|
| 108 |
107
|
sumeq2dv |
|
| 109 |
108
|
sumeq2i |
|
| 110 |
|
ovex |
|
| 111 |
110 2
|
csbie |
|
| 112 |
111
|
a1i |
|
| 113 |
112
|
sumeq2dv |
|
| 114 |
113
|
sumeq2i |
|
| 115 |
104 109 114
|
3eqtr3g |
|