Metamath Proof Explorer


Theorem fsum0diaglem

Description: Lemma for fsum0diag . (Contributed by Mario Carneiro, 28-Apr-2014) (Revised by Mario Carneiro, 8-Apr-2016)

Ref Expression
Assertion fsum0diaglem j 0 N k 0 N j k 0 N j 0 N k

Proof

Step Hyp Ref Expression
1 elfzle1 j 0 N 0 j
2 1 adantr j 0 N k 0 N j 0 j
3 elfz3nn0 j 0 N N 0
4 3 adantr j 0 N k 0 N j N 0
5 4 nn0zd j 0 N k 0 N j N
6 5 zred j 0 N k 0 N j N
7 elfzelz j 0 N j
8 7 adantr j 0 N k 0 N j j
9 8 zred j 0 N k 0 N j j
10 6 9 subge02d j 0 N k 0 N j 0 j N j N
11 2 10 mpbid j 0 N k 0 N j N j N
12 5 8 zsubcld j 0 N k 0 N j N j
13 eluz N j N N N j N j N
14 12 5 13 syl2anc j 0 N k 0 N j N N j N j N
15 11 14 mpbird j 0 N k 0 N j N N j
16 fzss2 N N j 0 N j 0 N
17 15 16 syl j 0 N k 0 N j 0 N j 0 N
18 simpr j 0 N k 0 N j k 0 N j
19 17 18 sseldd j 0 N k 0 N j k 0 N
20 elfzelz k 0 N j k
21 20 adantl j 0 N k 0 N j k
22 21 zred j 0 N k 0 N j k
23 elfzle2 k 0 N j k N j
24 23 adantl j 0 N k 0 N j k N j
25 22 6 9 24 lesubd j 0 N k 0 N j j N k
26 elfzuz j 0 N j 0
27 26 adantr j 0 N k 0 N j j 0
28 5 21 zsubcld j 0 N k 0 N j N k
29 elfz5 j 0 N k j 0 N k j N k
30 27 28 29 syl2anc j 0 N k 0 N j j 0 N k j N k
31 25 30 mpbird j 0 N k 0 N j j 0 N k
32 19 31 jca j 0 N k 0 N j k 0 N j 0 N k