Metamath Proof Explorer


Theorem fsum1p

Description: Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fsumm1.1 φ N M
fsumm1.2 φ k M N A
fsum1p.3 k = M A = B
Assertion fsum1p φ k = M N A = B + k = M + 1 N A

Proof

Step Hyp Ref Expression
1 fsumm1.1 φ N M
2 fsumm1.2 φ k M N A
3 fsum1p.3 k = M A = B
4 eluzel2 N M M
5 1 4 syl φ M
6 fzsn M M M = M
7 5 6 syl φ M M = M
8 7 ineq1d φ M M M + 1 N = M M + 1 N
9 5 zred φ M
10 9 ltp1d φ M < M + 1
11 fzdisj M < M + 1 M M M + 1 N =
12 10 11 syl φ M M M + 1 N =
13 8 12 eqtr3d φ M M + 1 N =
14 eluzfz1 N M M M N
15 1 14 syl φ M M N
16 fzsplit M M N M N = M M M + 1 N
17 15 16 syl φ M N = M M M + 1 N
18 7 uneq1d φ M M M + 1 N = M M + 1 N
19 17 18 eqtrd φ M N = M M + 1 N
20 fzfid φ M N Fin
21 13 19 20 2 fsumsplit φ k = M N A = k M A + k = M + 1 N A
22 3 eleq1d k = M A B
23 2 ralrimiva φ k M N A
24 22 23 15 rspcdva φ B
25 3 sumsn M B k M A = B
26 5 24 25 syl2anc φ k M A = B
27 26 oveq1d φ k M A + k = M + 1 N A = B + k = M + 1 N A
28 21 27 eqtrd φ k = M N A = B + k = M + 1 N A