Step |
Hyp |
Ref |
Expression |
1 |
|
fsumm1.1 |
|
2 |
|
fsumm1.2 |
|
3 |
|
fsum1p.3 |
|
4 |
|
eluzel2 |
|
5 |
1 4
|
syl |
|
6 |
|
fzsn |
|
7 |
5 6
|
syl |
|
8 |
7
|
ineq1d |
|
9 |
5
|
zred |
|
10 |
9
|
ltp1d |
|
11 |
|
fzdisj |
|
12 |
10 11
|
syl |
|
13 |
8 12
|
eqtr3d |
|
14 |
|
eluzfz1 |
|
15 |
1 14
|
syl |
|
16 |
|
fzsplit |
|
17 |
15 16
|
syl |
|
18 |
7
|
uneq1d |
|
19 |
17 18
|
eqtrd |
|
20 |
|
fzfid |
|
21 |
13 19 20 2
|
fsumsplit |
|
22 |
3
|
eleq1d |
|
23 |
2
|
ralrimiva |
|
24 |
22 23 15
|
rspcdva |
|
25 |
3
|
sumsn |
|
26 |
5 24 25
|
syl2anc |
|
27 |
26
|
oveq1d |
|
28 |
21 27
|
eqtrd |
|