| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumm1.1 |  | 
						
							| 2 |  | fsumm1.2 |  | 
						
							| 3 |  | fsum1p.3 |  | 
						
							| 4 |  | eluzel2 |  | 
						
							| 5 | 1 4 | syl |  | 
						
							| 6 |  | fzsn |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 | 7 | ineq1d |  | 
						
							| 9 | 5 | zred |  | 
						
							| 10 | 9 | ltp1d |  | 
						
							| 11 |  | fzdisj |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 | 8 12 | eqtr3d |  | 
						
							| 14 |  | eluzfz1 |  | 
						
							| 15 | 1 14 | syl |  | 
						
							| 16 |  | fzsplit |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 7 | uneq1d |  | 
						
							| 19 | 17 18 | eqtrd |  | 
						
							| 20 |  | fzfid |  | 
						
							| 21 | 13 19 20 2 | fsumsplit |  | 
						
							| 22 | 3 | eleq1d |  | 
						
							| 23 | 2 | ralrimiva |  | 
						
							| 24 | 22 23 15 | rspcdva |  | 
						
							| 25 | 3 | sumsn |  | 
						
							| 26 | 5 24 25 | syl2anc |  | 
						
							| 27 | 26 | oveq1d |  | 
						
							| 28 | 21 27 | eqtrd |  |