Step |
Hyp |
Ref |
Expression |
1 |
|
fsumcn.3 |
|
2 |
|
fsumcn.4 |
|
3 |
|
fsumcn.5 |
|
4 |
|
fsum2cn.7 |
|
5 |
|
fsum2cn.8 |
|
6 |
|
nfcv |
|
7 |
|
nfcv |
|
8 |
|
nfcv |
|
9 |
|
nfcv |
|
10 |
|
nfcsb1v |
|
11 |
9 10
|
nfcsbw |
|
12 |
8 11
|
nfsum |
|
13 |
|
nfcv |
|
14 |
|
nfcsb1v |
|
15 |
13 14
|
nfsum |
|
16 |
|
csbeq1a |
|
17 |
|
csbeq1a |
|
18 |
16 17
|
sylan9eq |
|
19 |
18
|
sumeq2sdv |
|
20 |
6 7 12 15 19
|
cbvmpo |
|
21 |
|
vex |
|
22 |
|
vex |
|
23 |
21 22
|
op2ndd |
|
24 |
23
|
csbeq1d |
|
25 |
21 22
|
op1std |
|
26 |
25
|
csbeq1d |
|
27 |
26
|
csbeq2dv |
|
28 |
24 27
|
eqtrd |
|
29 |
28
|
sumeq2sdv |
|
30 |
29
|
mpompt |
|
31 |
20 30
|
eqtr4i |
|
32 |
|
txtopon |
|
33 |
2 4 32
|
syl2anc |
|
34 |
|
nfcv |
|
35 |
|
nfcv |
|
36 |
34 35 11 14 18
|
cbvmpo |
|
37 |
28
|
mpompt |
|
38 |
36 37
|
eqtr4i |
|
39 |
38 5
|
eqeltrrid |
|
40 |
1 33 3 39
|
fsumcn |
|
41 |
31 40
|
eqeltrid |
|