Step |
Hyp |
Ref |
Expression |
1 |
|
fsum2d.1 |
|
2 |
|
fsum2d.2 |
|
3 |
|
fsum2d.3 |
|
4 |
|
fsum2d.4 |
|
5 |
|
ssid |
|
6 |
|
sseq1 |
|
7 |
|
sumeq1 |
|
8 |
|
iuneq1 |
|
9 |
8
|
sumeq1d |
|
10 |
7 9
|
eqeq12d |
|
11 |
6 10
|
imbi12d |
|
12 |
11
|
imbi2d |
|
13 |
|
sseq1 |
|
14 |
|
sumeq1 |
|
15 |
|
iuneq1 |
|
16 |
15
|
sumeq1d |
|
17 |
14 16
|
eqeq12d |
|
18 |
13 17
|
imbi12d |
|
19 |
18
|
imbi2d |
|
20 |
|
sseq1 |
|
21 |
|
sumeq1 |
|
22 |
|
iuneq1 |
|
23 |
22
|
sumeq1d |
|
24 |
21 23
|
eqeq12d |
|
25 |
20 24
|
imbi12d |
|
26 |
25
|
imbi2d |
|
27 |
|
sseq1 |
|
28 |
|
sumeq1 |
|
29 |
|
iuneq1 |
|
30 |
29
|
sumeq1d |
|
31 |
28 30
|
eqeq12d |
|
32 |
27 31
|
imbi12d |
|
33 |
32
|
imbi2d |
|
34 |
|
sum0 |
|
35 |
|
0iun |
|
36 |
35
|
sumeq1i |
|
37 |
|
sum0 |
|
38 |
34 36 37
|
3eqtr4ri |
|
39 |
38
|
2a1i |
|
40 |
|
ssun1 |
|
41 |
|
sstr |
|
42 |
40 41
|
mpan |
|
43 |
42
|
imim1i |
|
44 |
|
simpll |
|
45 |
44 2
|
syl |
|
46 |
44 3
|
sylan |
|
47 |
44 4
|
sylan |
|
48 |
|
simplr |
|
49 |
|
simpr |
|
50 |
|
biid |
|
51 |
1 45 46 47 48 49 50
|
fsum2dlem |
|
52 |
51
|
exp31 |
|
53 |
52
|
a2d |
|
54 |
43 53
|
syl5 |
|
55 |
54
|
expcom |
|
56 |
55
|
a2d |
|
57 |
56
|
adantl |
|
58 |
12 19 26 33 39 57
|
findcard2s |
|
59 |
2 58
|
mpcom |
|
60 |
5 59
|
mpi |
|