| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsum2d.1 |
|
| 2 |
|
fsum2d.2 |
|
| 3 |
|
fsum2d.3 |
|
| 4 |
|
fsum2d.4 |
|
| 5 |
|
ssid |
|
| 6 |
|
sseq1 |
|
| 7 |
|
sumeq1 |
|
| 8 |
|
iuneq1 |
|
| 9 |
8
|
sumeq1d |
|
| 10 |
7 9
|
eqeq12d |
|
| 11 |
6 10
|
imbi12d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
sseq1 |
|
| 14 |
|
sumeq1 |
|
| 15 |
|
iuneq1 |
|
| 16 |
15
|
sumeq1d |
|
| 17 |
14 16
|
eqeq12d |
|
| 18 |
13 17
|
imbi12d |
|
| 19 |
18
|
imbi2d |
|
| 20 |
|
sseq1 |
|
| 21 |
|
sumeq1 |
|
| 22 |
|
iuneq1 |
|
| 23 |
22
|
sumeq1d |
|
| 24 |
21 23
|
eqeq12d |
|
| 25 |
20 24
|
imbi12d |
|
| 26 |
25
|
imbi2d |
|
| 27 |
|
sseq1 |
|
| 28 |
|
sumeq1 |
|
| 29 |
|
iuneq1 |
|
| 30 |
29
|
sumeq1d |
|
| 31 |
28 30
|
eqeq12d |
|
| 32 |
27 31
|
imbi12d |
|
| 33 |
32
|
imbi2d |
|
| 34 |
|
sum0 |
|
| 35 |
|
0iun |
|
| 36 |
35
|
sumeq1i |
|
| 37 |
|
sum0 |
|
| 38 |
34 36 37
|
3eqtr4ri |
|
| 39 |
38
|
2a1i |
|
| 40 |
|
ssun1 |
|
| 41 |
|
sstr |
|
| 42 |
40 41
|
mpan |
|
| 43 |
42
|
imim1i |
|
| 44 |
|
simpll |
|
| 45 |
44 2
|
syl |
|
| 46 |
44 3
|
sylan |
|
| 47 |
44 4
|
sylan |
|
| 48 |
|
simplr |
|
| 49 |
|
simpr |
|
| 50 |
|
biid |
|
| 51 |
1 45 46 47 48 49 50
|
fsum2dlem |
|
| 52 |
51
|
exp31 |
|
| 53 |
52
|
a2d |
|
| 54 |
43 53
|
syl5 |
|
| 55 |
54
|
expcom |
|
| 56 |
55
|
a2d |
|
| 57 |
56
|
adantl |
|
| 58 |
12 19 26 33 39 57
|
findcard2s |
|
| 59 |
2 58
|
mpcom |
|
| 60 |
5 59
|
mpi |
|