Step |
Hyp |
Ref |
Expression |
1 |
|
fsum2d.1 |
|
2 |
|
fsum2d.2 |
|
3 |
|
fsum2d.3 |
|
4 |
|
fsum2d.4 |
|
5 |
|
fsum2d.5 |
|
6 |
|
fsum2d.6 |
|
7 |
|
fsum2d.7 |
|
8 |
|
simpr |
|
9 |
8 7
|
sylib |
|
10 |
|
nfcv |
|
11 |
|
nfcsb1v |
|
12 |
|
nfcsb1v |
|
13 |
11 12
|
nfsum |
|
14 |
|
csbeq1a |
|
15 |
|
csbeq1a |
|
16 |
15
|
adantr |
|
17 |
14 16
|
sumeq12dv |
|
18 |
10 13 17
|
cbvsumi |
|
19 |
6
|
unssbd |
|
20 |
|
vex |
|
21 |
20
|
snss |
|
22 |
19 21
|
sylibr |
|
23 |
3
|
ralrimiva |
|
24 |
|
nfcsb1v |
|
25 |
24
|
nfel1 |
|
26 |
|
csbeq1a |
|
27 |
26
|
eleq1d |
|
28 |
25 27
|
rspc |
|
29 |
22 23 28
|
sylc |
|
30 |
4
|
ralrimivva |
|
31 |
|
nfcsb1v |
|
32 |
31
|
nfel1 |
|
33 |
24 32
|
nfralw |
|
34 |
|
csbeq1a |
|
35 |
34
|
eleq1d |
|
36 |
26 35
|
raleqbidv |
|
37 |
33 36
|
rspc |
|
38 |
22 30 37
|
sylc |
|
39 |
38
|
r19.21bi |
|
40 |
29 39
|
fsumcl |
|
41 |
|
csbeq1 |
|
42 |
|
csbeq1 |
|
43 |
42
|
adantr |
|
44 |
41 43
|
sumeq12dv |
|
45 |
44
|
sumsn |
|
46 |
22 40 45
|
syl2anc |
|
47 |
|
nfcv |
|
48 |
|
nfcsb1v |
|
49 |
|
csbeq1a |
|
50 |
47 48 49
|
cbvsumi |
|
51 |
|
csbeq1 |
|
52 |
|
snfi |
|
53 |
|
xpfi |
|
54 |
52 29 53
|
sylancr |
|
55 |
|
2ndconst |
|
56 |
22 55
|
syl |
|
57 |
|
fvres |
|
58 |
57
|
adantl |
|
59 |
48
|
nfel1 |
|
60 |
49
|
eleq1d |
|
61 |
59 60
|
rspc |
|
62 |
38 61
|
mpan9 |
|
63 |
51 54 56 58 62
|
fsumf1o |
|
64 |
|
elxp |
|
65 |
|
nfv |
|
66 |
|
nfv |
|
67 |
24
|
nfcri |
|
68 |
66 67
|
nfan |
|
69 |
65 68
|
nfan |
|
70 |
69
|
nfex |
|
71 |
|
nfv |
|
72 |
|
opeq1 |
|
73 |
72
|
eqeq2d |
|
74 |
|
velsn |
|
75 |
74
|
anbi1i |
|
76 |
|
eqtr2 |
|
77 |
76 26
|
syl |
|
78 |
77
|
eleq2d |
|
79 |
78
|
pm5.32da |
|
80 |
75 79
|
bitr4id |
|
81 |
|
equequ1 |
|
82 |
81
|
anbi1d |
|
83 |
80 82
|
bitrd |
|
84 |
73 83
|
anbi12d |
|
85 |
84
|
exbidv |
|
86 |
70 71 85
|
cbvexv1 |
|
87 |
64 86
|
bitri |
|
88 |
|
nfv |
|
89 |
|
nfcv |
|
90 |
89 31
|
nfcsbw |
|
91 |
90
|
nfeq2 |
|
92 |
|
nfv |
|
93 |
|
nfcsb1v |
|
94 |
93
|
nfeq2 |
|
95 |
1
|
ad2antlr |
|
96 |
34
|
ad2antrl |
|
97 |
|
fveq2 |
|
98 |
|
vex |
|
99 |
|
vex |
|
100 |
98 99
|
op2nd |
|
101 |
97 100
|
eqtr2di |
|
102 |
101
|
ad2antlr |
|
103 |
|
csbeq1a |
|
104 |
102 103
|
syl |
|
105 |
95 96 104
|
3eqtrd |
|
106 |
105
|
expl |
|
107 |
92 94 106
|
exlimd |
|
108 |
88 91 107
|
exlimd |
|
109 |
87 108
|
syl5bi |
|
110 |
109
|
imp |
|
111 |
110
|
sumeq2dv |
|
112 |
63 111
|
eqtr4d |
|
113 |
50 112
|
eqtrid |
|
114 |
46 113
|
eqtrd |
|
115 |
18 114
|
eqtrid |
|
116 |
115
|
adantr |
|
117 |
9 116
|
oveq12d |
|
118 |
|
disjsn |
|
119 |
5 118
|
sylibr |
|
120 |
|
eqidd |
|
121 |
2 6
|
ssfid |
|
122 |
6
|
sselda |
|
123 |
4
|
anassrs |
|
124 |
3 123
|
fsumcl |
|
125 |
122 124
|
syldan |
|
126 |
119 120 121 125
|
fsumsplit |
|
127 |
126
|
adantr |
|
128 |
|
eliun |
|
129 |
|
xp1st |
|
130 |
|
elsni |
|
131 |
129 130
|
syl |
|
132 |
131
|
adantl |
|
133 |
|
simpl |
|
134 |
132 133
|
eqeltrd |
|
135 |
134
|
rexlimiva |
|
136 |
128 135
|
sylbi |
|
137 |
|
xp1st |
|
138 |
136 137
|
anim12i |
|
139 |
|
elin |
|
140 |
|
elin |
|
141 |
138 139 140
|
3imtr4i |
|
142 |
119
|
eleq2d |
|
143 |
|
noel |
|
144 |
143
|
pm2.21i |
|
145 |
142 144
|
syl6bi |
|
146 |
141 145
|
syl5 |
|
147 |
146
|
ssrdv |
|
148 |
|
ss0 |
|
149 |
147 148
|
syl |
|
150 |
|
iunxun |
|
151 |
|
nfcv |
|
152 |
|
nfcv |
|
153 |
152 11
|
nfxp |
|
154 |
|
sneq |
|
155 |
154 14
|
xpeq12d |
|
156 |
151 153 155
|
cbviun |
|
157 |
|
sneq |
|
158 |
157 41
|
xpeq12d |
|
159 |
20 158
|
iunxsn |
|
160 |
156 159
|
eqtri |
|
161 |
160
|
uneq2i |
|
162 |
150 161
|
eqtri |
|
163 |
162
|
a1i |
|
164 |
|
snfi |
|
165 |
122 3
|
syldan |
|
166 |
|
xpfi |
|
167 |
164 165 166
|
sylancr |
|
168 |
167
|
ralrimiva |
|
169 |
|
iunfi |
|
170 |
121 168 169
|
syl2anc |
|
171 |
|
eliun |
|
172 |
|
elxp |
|
173 |
|
simprl |
|
174 |
|
simprrl |
|
175 |
|
elsni |
|
176 |
174 175
|
syl |
|
177 |
176
|
opeq1d |
|
178 |
173 177
|
eqtrd |
|
179 |
178 1
|
syl |
|
180 |
|
simpll |
|
181 |
122
|
adantr |
|
182 |
|
simprrr |
|
183 |
180 181 182 4
|
syl12anc |
|
184 |
179 183
|
eqeltrd |
|
185 |
184
|
ex |
|
186 |
185
|
exlimdvv |
|
187 |
172 186
|
syl5bi |
|
188 |
187
|
rexlimdva |
|
189 |
171 188
|
syl5bi |
|
190 |
189
|
imp |
|
191 |
149 163 170 190
|
fsumsplit |
|
192 |
191
|
adantr |
|
193 |
117 127 192
|
3eqtr4d |
|