Metamath Proof Explorer


Theorem fsum2dsub

Description: Lemma for breprexp - Re-index a double sum, using difference of the initial indices. (Contributed by Thierry Arnoux, 7-Dec-2021)

Ref Expression
Hypotheses fzsum2sub.m φ M 0
fzsum2sub.n φ N 0
fzsum2sub.1 i = k j A = B
fzsum2sub.2 φ i j j 1 N A
fzsum2sub.3 φ j 1 N k M + j + 1 M + N B = 0
fzsum2sub.4 φ j 1 N k 0 ..^ j B = 0
Assertion fsum2dsub φ i = 0 M j = 1 N A = k = 0 M + N j = 1 N B

Proof

Step Hyp Ref Expression
1 fzsum2sub.m φ M 0
2 fzsum2sub.n φ N 0
3 fzsum2sub.1 i = k j A = B
4 fzsum2sub.2 φ i j j 1 N A
5 fzsum2sub.3 φ j 1 N k M + j + 1 M + N B = 0
6 fzsum2sub.4 φ j 1 N k 0 ..^ j B = 0
7 fzssz 1 N
8 simpr φ j 1 N j 1 N
9 7 8 sseldi φ j 1 N j
10 0zd φ j 1 N 0
11 1 nn0zd φ M
12 11 adantr φ j 1 N M
13 simpll φ j 1 N i 0 M φ
14 fz1ssnn 1 N
15 nnssnn0 0
16 14 15 sstri 1 N 0
17 16 8 sseldi φ j 1 N j 0
18 nn0uz 0 = 0
19 17 18 eleqtrdi φ j 1 N j 0
20 neg0 0 = 0
21 uzneg j 0 0 j
22 20 21 eqeltrrid j 0 0 j
23 fzss1 0 j 0 M j M
24 19 22 23 3syl φ j 1 N 0 M j M
25 fzssuz j M j
26 24 25 sstrdi φ j 1 N 0 M j
27 26 sselda φ j 1 N i 0 M i j
28 8 adantr φ j 1 N i 0 M j 1 N
29 13 27 28 4 syl3anc φ j 1 N i 0 M A
30 9 10 12 29 3 fsumshft φ j 1 N i = 0 M A = k = 0 + j M + j B
31 1 adantr φ j 1 N M 0
32 14 8 sseldi φ j 1 N j
33 32 nnnn0d φ j 1 N j 0
34 31 33 nn0addcld φ j 1 N M + j 0
35 34 nn0red φ j 1 N M + j
36 35 ltp1d φ j 1 N M + j < M + j + 1
37 fzdisj M + j < M + j + 1 j M + j M + j + 1 M + N =
38 36 37 syl φ j 1 N j M + j M + j + 1 M + N =
39 2 nn0zd φ N
40 11 39 zaddcld φ M + N
41 40 adantr φ j 1 N M + N
42 34 nn0zd φ j 1 N M + j
43 32 nnred φ j 1 N j
44 nn0addge2 j M 0 j M + j
45 43 31 44 syl2anc φ j 1 N j M + j
46 2 nn0red φ N
47 46 adantr φ j 1 N N
48 31 nn0red φ j 1 N M
49 elfzle2 j 1 N j N
50 49 adantl φ j 1 N j N
51 43 47 48 50 leadd2dd φ j 1 N M + j M + N
52 elfz4 j M + N M + j j M + j M + j M + N M + j j M + N
53 9 41 42 45 51 52 syl32anc φ j 1 N M + j j M + N
54 fzsplit M + j j M + N j M + N = j M + j M + j + 1 M + N
55 53 54 syl φ j 1 N j M + N = j M + j M + j + 1 M + N
56 fzfid φ j 1 N j M + N Fin
57 simpll φ j 1 N k j M + N φ
58 8 adantr φ j 1 N k j M + N j 1 N
59 16 58 sseldi φ j 1 N k j M + N j 0
60 fz2ssnn0 j 0 j M + N 0
61 59 60 syl φ j 1 N k j M + N j M + N 0
62 simpr φ j 1 N k j M + N k j M + N
63 61 62 sseldd φ j 1 N k j M + N k 0
64 3 eleq1d i = k j A B
65 simpll φ i j j 1 N φ
66 simplr φ i j j 1 N i j
67 simpr φ i j j 1 N j 1 N
68 65 66 67 4 syl3anc φ i j j 1 N A
69 68 an32s φ j 1 N i j A
70 69 ralrimiva φ j 1 N i j A
71 70 adantr φ j 1 N k 0 i j A
72 nnsscn
73 14 72 sstri 1 N
74 simplr φ j 1 N k 0 j 1 N
75 73 74 sseldi φ j 1 N k 0 j
76 simpr φ j 1 N k 0 k 0
77 76 nn0cnd φ j 1 N k 0 k
78 75 77 negsubdi2d φ j 1 N k 0 j k = k j
79 7 74 sseldi φ j 1 N k 0 j
80 eluzmn j k 0 j j k
81 79 76 80 syl2anc φ j 1 N k 0 j j k
82 uzneg j j k j k j
83 81 82 syl φ j 1 N k 0 j k j
84 78 83 eqeltrrd φ j 1 N k 0 k j j
85 64 71 84 rspcdva φ j 1 N k 0 B
86 57 58 63 85 syl21anc φ j 1 N k j M + N B
87 38 55 56 86 fsumsplit φ j 1 N k = j M + N B = k = j M + j B + k = M + j + 1 M + N B
88 9 zcnd φ j 1 N j
89 88 addid2d φ j 1 N 0 + j = j
90 89 oveq1d φ j 1 N 0 + j M + j = j M + j
91 90 eqcomd φ j 1 N j M + j = 0 + j M + j
92 91 sumeq1d φ j 1 N k = j M + j B = k = 0 + j M + j B
93 5 sumeq2dv φ j 1 N k = M + j + 1 M + N B = k = M + j + 1 M + N 0
94 fzfi M + j + 1 M + N Fin
95 sumz M + j + 1 M + N 0 M + j + 1 M + N Fin k = M + j + 1 M + N 0 = 0
96 95 olcs M + j + 1 M + N Fin k = M + j + 1 M + N 0 = 0
97 94 96 ax-mp k = M + j + 1 M + N 0 = 0
98 93 97 eqtrdi φ j 1 N k = M + j + 1 M + N B = 0
99 92 98 oveq12d φ j 1 N k = j M + j B + k = M + j + 1 M + N B = k = 0 + j M + j B + 0
100 fzfid φ j 1 N 0 + j M + j Fin
101 simpll φ j 1 N k 0 + j M + j φ
102 8 adantr φ j 1 N k 0 + j M + j j 1 N
103 elfzuz3 j 1 N N j
104 103 adantl φ j 1 N N j
105 eluzadd N j M N + M j + M
106 104 12 105 syl2anc φ j 1 N N + M j + M
107 2 nn0cnd φ N
108 107 adantr φ j 1 N N
109 zsscn
110 109 12 sseldi φ j 1 N M
111 108 110 addcomd φ j 1 N N + M = M + N
112 88 110 addcomd φ j 1 N j + M = M + j
113 112 fveq2d φ j 1 N j + M = M + j
114 106 111 113 3eltr3d φ j 1 N M + N M + j
115 114 adantr φ j 1 N k 0 + j M + j M + N M + j
116 fzss2 M + N M + j j M + j j M + N
117 115 116 syl φ j 1 N k 0 + j M + j j M + j j M + N
118 simpr φ j 1 N k 0 + j M + j k 0 + j M + j
119 90 adantr φ j 1 N k 0 + j M + j 0 + j M + j = j M + j
120 118 119 eleqtrd φ j 1 N k 0 + j M + j k j M + j
121 117 120 sseldd φ j 1 N k 0 + j M + j k j M + N
122 101 102 121 63 syl21anc φ j 1 N k 0 + j M + j k 0
123 101 102 122 85 syl21anc φ j 1 N k 0 + j M + j B
124 100 123 fsumcl φ j 1 N k = 0 + j M + j B
125 124 addid1d φ j 1 N k = 0 + j M + j B + 0 = k = 0 + j M + j B
126 87 99 125 3eqtrrd φ j 1 N k = 0 + j M + j B = k = j M + N B
127 fzval3 M + N j M + N = j ..^ M + N + 1
128 41 127 syl φ j 1 N j M + N = j ..^ M + N + 1
129 128 ineq2d φ j 1 N 0 ..^ j j M + N = 0 ..^ j j ..^ M + N + 1
130 fzodisj 0 ..^ j j ..^ M + N + 1 =
131 129 130 eqtrdi φ j 1 N 0 ..^ j j M + N =
132 41 peano2zd φ j 1 N M + N + 1
133 33 nn0ge0d φ j 1 N 0 j
134 132 zred φ j 1 N M + N + 1
135 41 zred φ j 1 N M + N
136 nn0addge2 N M 0 N M + N
137 46 1 136 syl2anc φ N M + N
138 137 adantr φ j 1 N N M + N
139 135 lep1d φ j 1 N M + N M + N + 1
140 47 135 134 138 139 letrd φ j 1 N N M + N + 1
141 43 47 134 50 140 letrd φ j 1 N j M + N + 1
142 elfz4 0 M + N + 1 j 0 j j M + N + 1 j 0 M + N + 1
143 10 132 9 133 141 142 syl32anc φ j 1 N j 0 M + N + 1
144 fzosplit j 0 M + N + 1 0 ..^ M + N + 1 = 0 ..^ j j ..^ M + N + 1
145 143 144 syl φ j 1 N 0 ..^ M + N + 1 = 0 ..^ j j ..^ M + N + 1
146 fzval3 M + N 0 M + N = 0 ..^ M + N + 1
147 41 146 syl φ j 1 N 0 M + N = 0 ..^ M + N + 1
148 128 uneq2d φ j 1 N 0 ..^ j j M + N = 0 ..^ j j ..^ M + N + 1
149 145 147 148 3eqtr4d φ j 1 N 0 M + N = 0 ..^ j j M + N
150 fzfid φ 0 M + N Fin
151 150 adantr φ j 1 N 0 M + N Fin
152 simpl φ k 0 M + N j 1 N φ
153 8 adantrl φ k 0 M + N j 1 N j 1 N
154 fz0ssnn0 0 M + N 0
155 simprl φ k 0 M + N j 1 N k 0 M + N
156 154 155 sseldi φ k 0 M + N j 1 N k 0
157 152 153 156 85 syl21anc φ k 0 M + N j 1 N B
158 157 anass1rs φ j 1 N k 0 M + N B
159 131 149 151 158 fsumsplit φ j 1 N k = 0 M + N B = k 0 ..^ j B + k = j M + N B
160 6 sumeq2dv φ j 1 N k 0 ..^ j B = k 0 ..^ j 0
161 fzofi 0 ..^ j Fin
162 sumz 0 ..^ j 0 0 ..^ j Fin k 0 ..^ j 0 = 0
163 162 olcs 0 ..^ j Fin k 0 ..^ j 0 = 0
164 161 163 ax-mp k 0 ..^ j 0 = 0
165 160 164 eqtrdi φ j 1 N k 0 ..^ j B = 0
166 165 oveq1d φ j 1 N k 0 ..^ j B + k = j M + N B = 0 + k = j M + N B
167 56 86 fsumcl φ j 1 N k = j M + N B
168 167 addid2d φ j 1 N 0 + k = j M + N B = k = j M + N B
169 159 166 168 3eqtrrd φ j 1 N k = j M + N B = k = 0 M + N B
170 126 169 eqtrd φ j 1 N k = 0 + j M + j B = k = 0 M + N B
171 30 170 eqtrd φ j 1 N i = 0 M A = k = 0 M + N B
172 171 sumeq2dv φ j = 1 N i = 0 M A = j = 1 N k = 0 M + N B
173 fzfid φ 0 M Fin
174 fzfid φ 1 N Fin
175 29 anasss φ j 1 N i 0 M A
176 175 ancom2s φ i 0 M j 1 N A
177 173 174 176 fsumcom φ i = 0 M j = 1 N A = j = 1 N i = 0 M A
178 150 174 157 fsumcom φ k = 0 M + N j = 1 N B = j = 1 N k = 0 M + N B
179 172 177 178 3eqtr4d φ i = 0 M j = 1 N A = k = 0 M + N j = 1 N B